A roadmap for improving the representation of photosynthesis in Earth system models

Summary

Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty to projections of global carbon fluxes. Here we compared the representation of photosynthesis in seven TBMs by examining leaf and canopy level responses of photosynthetic CO₂ assimilation (A) to key environmental variables: light, temperature, CO₂ concentration, vapor pressure deficit and soil water content. We identified research areas where limited process knowledge prevents inclusion of physiological phenomena in current TBMs and research areas where data are urgently needed for model parameterization or evaluation. We provide a roadmap for new science needed to improve the representation of photosynthesis in the next generation of terrestrial biosphere and Earth system models.

Introduction

Fossil energy use is the dominant driver of the increase in atmospheric CO₂ concentration (C_a) and the principal cause of global climate change (Beer et al., 2010; Boden et al., 2013; Le Quéré et al., 2015). Terrestrial photosynthetic CO₂ assimilation (A) is the largest of these CO₂ fluxes (∼120 Pg C yr⁻¹), subsidizing our use of fossil fuels through the net assimilation of about one-third of the CO₂ emissions associated with anthropogenic activities (Le Quéré et al., 2015). However, there is critical uncertainty about how the terrestrial carbon sink will be affected by changes in A with rising C_a, temperature and drought (Gregory et al., 2009; IPCC, 2013; Friedlingstein et al., 2014). Therefore, reducing the uncertainty associated with model representation of A is an essential part of improving confidence in projections of global change (Ciais et al., 2013).

In this study we have focused on photosynthesis, but recognize that improving the understanding and projection of the terrestrial biosphere’s response to global change also depends on realistically representing many additional processes that are down stream of carbon assimilation (e.g. carbon allocation, plant and soil respiration, and nutrient cycling). Of particularly relevance to photosynthesis is the allocation of extra carbon to leaf area in trees grown at elevated C_a (Ainsworth & Long, 2005). Model representation and integration of these processes, and how the balance between them shifts in their individual and combined responses to environmental drivers, will also be critical in order to capture whole system responses, but such a comprehensive discussion is beyond the scope of this study.

We examined model representations of A in seven terrestrial biosphere models (TBMs). These models include four that represent the land component of ESMs which were part of the recent Coupled Model Intercomparison Project (CMIP5) – the main resource for the IPCC Fifth Assessment Report (IPCC, 2013; Friedlingstein et al., 2014). Our approach focuses on how physiological responses are represented by TBMs. We compared modeled responses of A to key environmental variables in order to identify areas of model divergence that reflect gaps in current understanding of the physiological and environmental controls of A. In the second half of the paper, we turn to issues of scale – vertical, horizontal and temporal – and consider how representation and parameterization of leaf-level processes is scaled to the canopy within current model frameworks.

We had three goals: (1) understand how models differ in their representation of A; (2) identify gaps in current understanding of A that contribute to uncertainty in model output; (3) identify areas where current process knowledge and emerging data sets can be used to improve model skill. This study provides recommendations for immediate improvements that can be made to current model representation of A and also highlights the scientific activity needed to further advance representation of A in the next generation of TBMs.

Representation of leaf photosynthesis in terrestrial biosphere models

Current model structure and parameterization

The Farquhar, von Caemmerer and Berry (FvCB) model of A (Farquhar et al., 1980; von Caemmerer & Farquhar, 1981; von Caemmerer, 2000) provides a robust mechanistic representation of A in C₃ species, and is the foundation for model estimation of gross
primary production (GPP) in many TBMs (Cramer et al., 2001; Rogers, 2014), including the seven models considered here (BETHY, CLM, ED2, G’DAY, JSBACH, JULES and O-CN; Table 1). The formulations of the FvCB model used in these TBMs include elements of: Collatz et al. (1991), in CLM, ED2 and JULES; Foley et al. (1996), in ED2; and Kull & Kruijt (1998), in O-CN (Table 1). The FvCB model represents photosynthetic CO2 assimilation as the most limiting of two biochemical processes: Rubisco carboxylation, and ribulose-1,5-bisphosphate (RuBP) regeneration driven by electron transport. These processes limit A in most environments; however, Sharkey (1985) subsequently described how limitations on triose phosphate utilization (TPU limitation) could also limit A under some conditions. Only two models in this study included TPU limitation (CLM and JULES; Table 1).

Similar biochemical models have been developed for the C4 photosynthetic pathway (von Caemmerer, 2000). For reasons of space, we limit our discussion to model treatment of C3 photosynthesis. However we note that a similar exercise focused on C4 photosynthesis would be valuable.

Models typically represent stomatal conductance (g) using a coupled relationship with A that varies with atmospheric, or leaf-surface, CO2 concentration, and some measure of atmospheric humidity. This model approach was originally formulated by Ball et al. (1987), who used a direct dependence on relative humidity (RH) in their equation for g, Ball et al.’s (1987) equation is still widely used in many TBMs, including CLM. Leuning (1995) suggested an alternative equation that depends on vapor pressure deficit (VPD) rather than RH. ED2 uses the Leuning (1995) equation, while JULES uses a very similar equation developed by Jacobs (1994). The approaches to represent g implemented by the models considered here are quite diverse (Table 1) which has a wide-ranging impact on the model outputs we considered.

The TBMs in this study represent vegetation using broad plant functional types (PFTs). The FvCB model is parameterized with a number of important constants that are typically the same for all PFTs. PFTs are distinguished with respect to photosynthesis through differences in the estimates of the maximum carboxylation rate of Rubisco ($V_{c,max}$), the maximum rate of electron transport (J_{max}) and the slope of the stomatal conductance response. Several groups are now working towards next-generation vegetation models in which PFTs are replaced by ‘trait-based approaches’ (Wullschleger et al., 2014). This catchphrase includes leveraging trait-environment linkages (van Bodegom et al., 2014; Reich, 2014; Ali et al., 2015), optimality approaches (Xu et al., 2012; Meir et al., 2015), trait filtering (Fisher et al., 2012) and adaptive global vegetation models (Scheiter et al., 2013). However, our review is relevant to these approaches as well, as they still employ similar representations of photosynthesis. The key difference lies in parameterization, which we discuss when considering scaling to landscapes.

Mesophyll conductance

In C3 species, mesophyll conductance (g_{m}) describes the conductance to CO2 diffusion from the intercellular airspace within a leaf to the sites of carboxylation within chloroplasts (von Caemmerer & Evans, 1991; Flexas et al., 2012). It is one of the four main physiological processes limiting CO2 uptake and fixation, the others being g_s and the biochemical activity of Rubisco and RuBP regeneration. To our knowledge, there are no land models that currently contribute to the IPCC assessments that consider g_{m}. This absence reflects the challenge of adding further complexity to the models, but also the uncertainty and technical difficulty of the measurements required to estimate g_{m}.

Response curves of A to intercellular [CO2] (C_{i}) are routinely used to infer the maximum biochemical activity of Rubisco and RuBP regeneration, i.e. $V_{c,max}$ and J_{max}. When the FvCB model was conceived, the assumption was made that the difference between C_i and the [CO2] within the chloroplast (C_{c}) was sufficiently small that it could be ignored. Subsequently, improved measurement techniques for g_{m} have shown that it can impose a significant limitation on A which varies with temperature, and there are significant species differences in these responses (von Caemmerer & Evans, 2015). If g_{m} is not taken into account in the analysis of $A-C_{i}$ curves, the true $V_{c,max}$ will be underestimated (von Caemmerer, 2000; Niinemets et al., 2009; Sun et al., 2014). Furthermore, temperature responses of $V_{c,max}$ and J_{max} derived from gas exchange measurements will not necessarily reflect the temperature dependence of the underlying biochemistry alone, but will also reflect the temperature response of g_{m} (Medlyn et al., 2002a). The use of apparent parameters is problematic if modelers wish to incorporate new data on the underlying biochemistry of photosynthesis. For example, a recent biochemical survey of the catalytic diversity in Rubisco revealed significant and marked variation in key parameters across 75 species (Orr et al., 2016). These data cannot be used directly in models without including g_{m} in model structures, highlighting the need for improved understanding and model representation of g_{m}.

Several TBMs currently use linear relationships between apparent $V_{c,max}$ (obtained from $A-C_{i}$ curves) and leaf nitrogen to derive $V_{c,max}$ prognostically. If g_{m} were to be incorporated into future TBMs, new algorithms linking $V_{c,max}$ to leaf N content would be required as the $V_{c,max}$ used in the relationship would need to be derived as a function of C_{i} not C_{c}. Currently a reliance on apparent $V_{c,max}$–leaf N relationships means that models underestimate the amount of N partitioned to Rubisco, or put another way, overestimate the nitrogen use efficiency of CO2 carboxylation by Rubisco.

It is clear that an improved understanding of g_{m} remains a critical research area. Despite recent important progress that may simplify prediction of g_{m} (Tholen et al., 2012), we feel that immediate inclusion of g_{m} in TBMs is premature. ‘Apparent’ parameters derived from $A-C_{i}$ response curves, which implicitly account for g_{m}, have been used successfully to model A in many ecosystems at the leaf and canopy level (e.g. Bernacchi et al., 2003; Medlyn et al., 2005; Thum et al., 2007). Until understanding and measurement of g_{m} matures, its inclusion in TBMs will likely drive additional uncertainty. Furthermore, the modeling community currently has access to a substantial dataset (albeit heavily biased to the mid-latitudes) of ‘apparent’ parameters but almost no data for $V_{c,max}$ and J_{max} derived from $A-C_{i}$ curves. Including g_{m} now would dramatically shrink the amount of data available for model
Table 1 Model representation of the response of C₃ photosynthesis to key environmental variables used for this study

<table>
<thead>
<tr>
<th>Model Representation</th>
<th>BETHY</th>
<th>CLM4.5</th>
<th>ED2</th>
<th>G’DAY</th>
<th>JSBACH</th>
<th>JULES</th>
<th>O-CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomatal conductance (response to atmospheric VPD, C₃ soil moisture and A)</td>
<td>Minimum of (1) stomatal conductance necessary to realize maximum Cᵢ, C₃, and (2) soil water availability (Federer, 1982)</td>
<td>Sensitivity to atmospheric RH, Cₐ, and A from Ball et al. (1987)</td>
<td>Sensitivity to soil moisture from a β factor applied to the intercept of the Ball et al. (1987) model. The β factor is summed over soil layers, weighted by root fraction in each layer and calculated based on soil moisture content</td>
<td>Sensitivity to atmospheric VPD, Cₐ, and A from Medlyn et al. (2011)</td>
<td>Estimates potential A for any given condition assuming a maximal Cᵢ, C₃ resulting from a maximum potential gᵯ</td>
<td>Sensitivity to atmospheric VPD, C₃, and A from modification of Leuning (1995) model as proposed by Jacobs (1994)</td>
<td>Non-linear sensitivity to specific humidity deficit and Cᵢ. The latter is necessary because A for gᵯ is evaluated at saturating Cᵢ. A β factor is applied to the slope of the stomatal response when soil moisture content falls below 50% of plant available water maximum potential gᵯ, is reduced linearly.</td>
</tr>
<tr>
<td>Leaf photosynthesis (response to light)</td>
<td>Rectangular hyperbola, with realized quantum yield and A_sat calculated from Farquhar model</td>
<td>Hyperbolic function, with realized quantum yield and A_sat calculated from the Collatz et al. (1991) model, no J_max term included</td>
<td>Non-rectangular hyperbola, with realized quantum yield and A_sat calculated from Farquhar model</td>
<td>Rectangular hyperbola, with realized quantum yield and A_sat calculated from the Collatz et al. (1991) model, no J_max term included</td>
<td>Hyperbolic function, with realized quantum yield and A_sat calculated from Farquhar model</td>
<td>Explicit separation into light saturated and limited regions: A_sat is calculated from Farquhar et al. (1980). Light limited A is assumed to be proportional to light absorption (Kull & Kruijt, 1998)</td>
<td></td>
</tr>
<tr>
<td>Leaf photosynthesis (response to temperature)</td>
<td>Temperature dependence of kinetic constants follows Bernacchi et al. (2001). V_c_max and J_max are peaked Arrhenius functions of temperature</td>
<td>Temperature dependence of kinetic constants follows Bernacchi et al. (2001). V_c_max and J_max are peaked Arrhenius functions of temperature. TPU has the same temperature response as V_c_max</td>
<td>Temperature dependence of kinetic constants follows Bernacchi et al. (2001). V_c_max, J_max, and R_d are peaked Arrhenius functions (Medlyn et al., 2002a,b)</td>
<td>Temperature dependence of kinetic constants and V_c_max follow an Arrhenius function. f* and J_max vary linearly with temperature</td>
<td>Temperature dependence of kinetic constants and V_c_max follows Bernacchi et al. (2001). V_c_max has a peaked temperature function calculated from V_c_max at 25°C using vegetation-specific optimal temperature ranges</td>
<td>Temperature dependence of kinetic constants and V_c_max follows Bernacchi et al. (2001). The temperature dependence of J_max is derived from June et al. (2004)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>BETHY</th>
<th>CLM4.5</th>
<th>ED2</th>
<th>G’DAY</th>
<th>JSBACH</th>
<th>JULES</th>
<th>O-CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf photosynthesis (response to soil moisture content)</td>
<td>A β factor is applied to (V_{c, \text{max}}). The β factor, calculated based on soil moisture potential, is summed over soil layers, weighted by root fraction in each layer.</td>
<td></td>
<td>A β factor is applied to (J_{\text{max}}) and (V_{c, \text{max}}). Soil moisture content is expressed as a fraction of total plant available water and dependent on soil type.</td>
<td></td>
<td></td>
<td>A β factor reduces (V_{c, \text{max}}) and (J_{\text{max}}) when plant available water < 20% (Friend, 2010)</td>
</tr>
<tr>
<td>Canopy scaling</td>
<td>Multiple canopy layers, using Sellers’s (1987) two-stream approximation. (V_{c, \text{max}}) and (J_{\text{max}}) decreases exponentially within the canopy following Lloyd et al. (2010)</td>
<td>The multi-layer option explicitly resolves direct and diffuse radiation for sunlit and shaded leaves at each level in the canopy. Both options use Sellers’s (1987) two-stream approximation for radiative transfer. Nitrogen declines exponentially with greater cumulative LAI.</td>
<td>Cohort-based model with the number of layers equal to the number of cohorts. Cohorts differ by PFT definition. Radiation penetration is defined by leaf area index (LAI) and the leaf and wood single scattering albedos. There is no separation of sunlit and shaded foliage in the default version.</td>
<td>Big-leaf model, assuming exponential light and nitrogen distributions. Daily (A) calculated using Gaussian integration (Sands, 1996)</td>
<td>Multiple canopy layers, using Sellers’s (1987) two-stream approximation. LAI typically = 3. For LAI < 3, (N) (and hence (V_{c, \text{max}}), (J_{\text{max}})) is distributed evenly in the canopy (assumed to be open). For LAI > 3, (N) follows the distribution of light (exponential decline).</td>
<td>Multiple-layer canopy using the two-stream approximation from Sellers (1987) solving direct and diffuse radiation for sunlit and shaded leaves at each canopy layer. Includes exponential vertical nitrogen distribution of photosynthetic capacity and leaf respiration</td>
</tr>
</tbody>
</table>

BETHY, Biosphere Energy Transfer Hydrology scheme; CLM4.5, the Community Land Model version 4.5; G’DAY, Generic Decomposition and Yield model; JSBACH, Joint Scheme for Biosphere Atmosphere Coupling in Hamburg; JULES, Joint UK Land Environment Simulator; O-CN, an extension of the Organizing Carbon and Hydrology in Dynamic Ecosystems model that includes key N cycle processes.
parameterization. However, it is important to note that inclusion of g_m in models is essential if carbon isotope discrimination is to be inferred (Ethier & Livingston, 2004; Suits et al., 2005).

Recommendation: (1) Greater process knowledge of g_m will be required before it can be included in TBM. Specific needs include improved understanding of variation in g_m across PFTs and how it is affected by environmental drivers such as light and temperature.

Short-term leaf level responses to environmental variables in current model structures

Our goal was to understand and compare the physiological responses inside these seven TBM (Table 1). We focused on one particular PFT – a broad leaved deciduous tree – and defined several environmental and physiological variables which provided standard conditions for model intercomparison: instantaneous quantum flux density ($Q = 1500 \mu mol\ \text{mol}^{-1}$), upper canopy sunlit leaf temperature (25°C), $C_o = 380 \mu mol\ \text{mol}^{-1}$, $[O_2] = 210\ mmol\ \text{mol}^{-1}$, VPD = 1 kPa, soil moisture content at field capacity and $V_{c,max} = 60 \mu mol\ \text{m}^{-2}\ \text{s}^{-1}$. In the following sections we present and discuss leaf level responses to light, temperature, C_o, VPD and soil water content.

Short-term response to light

The initial slope of the photosynthetic light response curve is determined by the maximum quantum yield of CO$_2$ assimilation. For clarity, here we distinguish between the intrinsic quantum yield (Φ_{int}), which is the initial slope of the relationship between A and absorbed Q under non-photorespiratory conditions and the realized quantum yield (Φ_{real}), which we define as the photosynthetic rate per unit incident light at $Q = 100\ \mu mol\ \text{m}^{-2}\ \text{s}^{-1}$ in our standard conditions (Table 2 and the initial slope of the $A-Q$ response in Fig. 1a). The Φ_{int} is generally an input parameter to the models (Table 2) whereas the realized quantum yield is calculated by the models using the FvCB equations, and depends not only on the Φ_{int} but also on the assumed values for the Rubisco kinetic constant Γ^* (the CO$_2$ compensation point in the absence of mitochondrial respiration), the low light C_i, the leaf absorptance (a), and the convexity of the light response curve (Θ). Model variation in the choice of kinetic constants, low light C_i, a and Θ are summarized in Table 2. The CLM assumes that Φ_{int} is equal to the theoretical maximum of $(1-f)/8$, where $f=0.15$ and is used to correct for the spectral quality of light (von Caemmerer, 2000). As a result, CLM has the highest Φ_{real} (0.053 mol mol$^{-1}$; Table 2; Fig. 1a). The other models are parameterized with quantum yield inputs that result in a calculated Φ_{int} that is below the theoretical maximum and the resulting values for Φ_{real} are lower than those for CLM (Table 2). Despite a parameterization that is broadly consistent with other models, the initial slope of the $A-Q$ response of O-CN is strikingly low and results from a limitation of A by light harvesting at low Q (Kull & Kruis, 1998; Table 1).

Experimental studies focused on understanding natural variation in quantum yield have shown that there is little variation in Φ_{int} under unstressed conditions across a wide range of species, with an average value of 0.092 mol mol$^{-1}$ (Long et al., 1993; Singsaas et al., 2001), comparable with the range of Φ_{int} used in the models considered here (0.07–0.106, Table 2). However, Φ_{int} can be substantially lower in the field, particularly in stressed conditions (Singsaas et al., 2001; Niinemets et al., 2004; Medlyn et al., 2007; Singsaas et al., 2003).

Table 2 Parameters used by the models in this study (Table 1)

<table>
<thead>
<tr>
<th></th>
<th>BETHY</th>
<th>CLM4.5</th>
<th>ED2</th>
<th>G’DAY</th>
<th>JSBACH</th>
<th>JULES</th>
<th>O-CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_c at 25°C ($\mu mol\ \text{mol}^{-1}$)</td>
<td>404.9</td>
<td>404.9</td>
<td>300</td>
<td>404.9</td>
<td>404.9</td>
<td>300</td>
<td>404.9</td>
</tr>
<tr>
<td>K_s at 25°C ($\mu mol\ \text{mol}^{-1}$)</td>
<td>278.4</td>
<td>278.4</td>
<td>294</td>
<td>278.4</td>
<td>278.4</td>
<td>300</td>
<td>278.4</td>
</tr>
<tr>
<td>Γ^* at 25°C ($\mu mol\ \text{mol}^{-1}$)</td>
<td>42.75</td>
<td>42.75</td>
<td>41.57</td>
<td>42.75</td>
<td>42.75</td>
<td>40.38</td>
<td>42.75</td>
</tr>
<tr>
<td>Source of kinetic constants</td>
<td>Bern</td>
<td>Bern</td>
<td>Foley</td>
<td>Bern</td>
<td>Bern</td>
<td>Collatz</td>
<td>Bern</td>
</tr>
<tr>
<td>J_{ratio}</td>
<td>1.92</td>
<td>1.97</td>
<td>NA</td>
<td>2.00</td>
<td>1.90</td>
<td>NA</td>
<td>2.08</td>
</tr>
<tr>
<td>J_{max} ($\mu mol\ \text{m}^{-2}\ \text{s}^{-1}$)</td>
<td>115 (86)</td>
<td>115 (85)</td>
<td>NA</td>
<td>120 (90)</td>
<td>114 (86)</td>
<td>NA</td>
<td>126 (94)</td>
</tr>
<tr>
<td>Absorptance</td>
<td>0.88</td>
<td>0.85</td>
<td>0.73</td>
<td>0.85</td>
<td>0.88</td>
<td>0.85</td>
<td>0.80</td>
</tr>
<tr>
<td>Convexity</td>
<td>NA</td>
<td>0.98 & 0.95</td>
<td>NA</td>
<td>0.7</td>
<td>NA</td>
<td>0.83 & 0.93</td>
<td>NA</td>
</tr>
<tr>
<td>C_i at low light ($\mu mol\ \text{mol}^{-1}$)</td>
<td>348</td>
<td>400</td>
<td>400</td>
<td>293</td>
<td>348</td>
<td>280</td>
<td>ND</td>
</tr>
<tr>
<td>Model input for quantum yield</td>
<td>0.28b</td>
<td>0.4250b</td>
<td>0.08d</td>
<td>0.26c</td>
<td>0.28b</td>
<td>0.08d</td>
<td>0.08d</td>
</tr>
<tr>
<td>Calculated Φ_{int}</td>
<td>0.070</td>
<td>0.106</td>
<td>0.080</td>
<td>0.076</td>
<td>0.070</td>
<td>0.080</td>
<td>0.080</td>
</tr>
<tr>
<td>Φ_{real}</td>
<td>0.049</td>
<td>0.053</td>
<td>0.038</td>
<td>0.038</td>
<td>0.050</td>
<td>0.045</td>
<td>0.022</td>
</tr>
</tbody>
</table>

The Michaelis–Menten constants of Rubisco for carbon dioxide (K_c) and oxygen (K_s), the CO$_2$ compensation point in the absence of nonphotorespiratory micondrial respiration in the light (Γ^*) and the sources of those kinetic constants (Bern, Bernacchi et al. 2001; Collatz, Collatz et al. 1991; Foley, Foley et al. 1996). Where applicable the model specific ratio of the maximum electron transport rate (J_{max}) to maximum photosynthetic capacity ($V_{c,max}$), the (J_{ratio}), was used to calculate J_{max} for standard conditions, low nitrogen conditions are shown in parentheses. Leaf absorptance; the convexity term (θ for the transition between Rubisco and light limited and light limited and triose phosphate utilization (TPU) limited A, respectively); the intercellular [CO$_2$] (C_i) at low light. Three model inputs were used to parameterize quantum yield (Φ_{int}) quantum yield of electron transport based on absorbed light, Φ_{real} quantum yield of electron transport based on incident light and Φ_{real} quantum yield of photosynthesis based on absorbed light and measured under nonphotorespiratory conditions (Φ_{real}). Here we also show the calculated intrinsic quantum yield for all models to enable model comparisons. The modeled realized quantum yield under our standard conditions when $Q = 100\ \mu mol\ \text{m}^{-2}\ \text{s}^{-1}$ (Φ_{real}) is the initial slope of the leaf level A-Q response shown in Fig. 1(a) for our standard conditions where $V_{c,max}$ was set to 60 $\mu mol\ \text{m}^{-2}\ \text{s}^{-1}$ (and 45 $\mu mol\ \text{m}^{-2}\ \text{s}^{-1}$ for low nitrogen conditions) and where temperature $= 25^\circ\text{C}$, atmospheric $[O_2] = 210\ mmol\ \text{mol}^{-1}$, $C_i = 380 \mu mol\ \text{mol}^{-1}$, VPD = 1 kPa and soil moisture content was at field capacity, NA, not applicable; ND, no data.
Moving from the leaf to the canopy level, responses to irradiance (Fig. 1b–d) are not only dependent on the factors discussed earlier but also on the method used to scale physiology from the leaf to the canopy level, the representation of the light environment within the canopy, and the partitioning of foliage between sunlit and shaded leaves (Gu et al., 2002; Mercado et al., 2009). As a result, canopy scaling exacerbates existing differences between the TBMs and introduces new structural variation that further diversifies model output (Fig. 1b–d). Canopy scaling is discussed in detail later.

Recommendation: (2) Modeled responses of photosynthesis to light need to be parameterized and evaluated against data from field conditions, particularly at low temperature.

Do not mix and match

One issue that emerged here, but is relevant throughout this paper, is the need to avoid piecemeal approaches to model parameterization. For example, we need to carefully and consistently use kinetic constants and temperature response functions because the models are highly sensitive to them. Any constants and functions used when deriving photosynthetic parameters from data have to be the same ones used in the model. For example, if a value of $V_{c,\text{max}}$ at 25°C is used in a model, that model must use the same Michaelis–Menten constants (K_c and K_o) and I^* (e.g. see Table 2), and the associated temperature dependencies, that were used to estimate $V_{c,\text{max}}$ from the original $A-C_i$ response curve as well as the same temperature response function used to scale $V_{c,\text{max}}$ from the measurement temperature to 25°C. This problem, that derived parameters depend on the equations used to derive them, introduces error when trying to use the parameters to perform meta-analyses or calibrate models (Medlyn et al., 2002a,b; Dietze, 2014). As we make progress to provide models with richer data sets for use in model parameterization and evaluation, we need to archive our raw gas exchange data so that, for example, new kinetic constants and temperature response functions can be applied to old data, maintaining its value as understanding advances. The estimation of quantum yield provides another example where the assembly of parameters (e.g. $\Phi_{\text{int},a, I^*, \Theta}$) and approaches (e.g. estimation of low light C_i) is not coordinated and where archived data would be useful.

Recommendation: (3) Models need to make careful and consistent use of kinetic constants and temperature response functions. (4) Physiologists should archive their raw data to enable coordinated parameterization and the preservation of their data for future analysis.

Short-term response to temperature

The temperature response of A is complex and dependent on additional variables such as Q and C_i (Fig. 2). The C_i in turn depends on g, and hence VPD, such that the temperature and VPD...
response of g_s also impacts the shape of the temperature response of A (Medlyn et al., 2002a; Lin et al., 2012). The model by Farquhar et al. (1980) suggests that A is Rubisco-limited at low temperature—but note that TPU limitation can limit A in some species at low temperature (Sage & Sharkey, 1987). The decline in A at high temperature (Fig. 2) can be brought about by the temperature dependence of J_max and the strong increase in photorespiration and mitochondrial respiration with increasing temperature (Farquhar et al., 1980; von Caemmerer, 2000). High temperature limitations on Rubisco activase could also cause decline in A but this mechanism is currently absent from all these models (Salvucci & Crafts-Brandner, 2004a,b; Sage & Kubien, 2007). The steep decline of A at temperatures above 30°C in the Farquhar et al. (1980) model is largely driven by the temperature dependence of J_max. This effect needs to be treated with some caution as it may be due to irreversible inhibition in the in vitro system, from which the function was derived. June et al. (2004) provided a simpler empirical equation for fitting the temperature dependence of J_max. The temperature dependence of A is also driven by the choice of kinetic parameters and their temperature dependencies as discussed earlier. Some TBMs use spinach (Jordan & Ogren, 1984) or tobacco (Bernacchi et al., 2001) temperature response functions for V_c,max for all species. However, as there are important differences in the response of V_c,max to temperature among warm and cool climate plant species (Kattge & Knorr, 2007; Galmés et al., 2015), continued acquisition of temperature response functions from different biomes is critically important. The temperature optimum of A (T_opt) depends on environmental conditions such as Q and C_a, with T_opt being more pronounced at high Q and C_a (e.g. compare Fig. 2a,c with 2b,d). Here, two models stand out for their temperature responses; unlike the majority of models that show an optimum ~ 24.5°C, ED2 has an emergent temperature optimum at 16°C, despite a V_c,max optimum at 39°C, and JSBACH shows no high temperature limitation on A (Table 1; Fig. 2). It is usual for T_opt to shift to a slightly higher temperature as C_a rises (Long, 1991) because at high C_a the rate of photorespiration is reduced, thereby extending the temperature range where positive CO2 assimilation occurs. The CO2 effect on T_opt is evident in Fig. 2 in a number of the models at both the leaf and canopy level. Here, elevating C_a from 380 to 550 μmol mol−1 shifts the T_opt up by ~ 2°C (Fig. 2b,d). Two models do not show this shift in T_opt: JSBACH has no T_opt, and the T_opt for ED2 remains at 16°C despite the increase in C_a from 380 to 550 μmol mol−1.

Current empirical models predict the response of g_s to temperature based on a relationship between g_s and A that is modified by VPD. This approach is successful in many cases (e.g. Duursma et al., 2014) although the mechanisms underlying the response remain poorly understood (Mott, 2009; Busch, 2013). In addition, there is evidence that the correlation between g_s and A breaks down at high temperatures (>35°C) in some species, with stomata remaining open while A goes to zero (e.g. Lu et al., 2000; Scafaro et al., 2012; von Caemmerer & Evans, 2015; Teskey et al., 2015; Slot et al., 2016). Presumably this response allows the plant to maintain leaf temperatures at nondamaging levels via transpirational cooling. It is not known how widespread this response is (Teskey et al., 2015) nor to what extent it occurs in the field. Slot et al. (2016), for example, find this response in glasshouse-based measurements but not in field trees.

Recommendations: (5) Physiologists need to continue measuring temperature response functions for V_c,max and J_max. (6) More field-based research into the independent temperature response of g_s is required to better understand the mechanism underlying the response of A to high temperatures.

Short-term response to CO2

At low C_a, when A is limited by the amount of active Rubisco available for carboxylation (V_c,max), A increases with rising C_a for two reasons: (1) the affinity of Rubisco for CO2 is low, and therefore increasing the substrate concentration increases carboxylation rates; (2) CO2 competitively inhibits the oxygenation reaction, reducing CO2 losses associated with photorespiration (Fig. 3). At higher C_a – i.e. above the inflection point of the A–C_a curve (most notable in the leaf level responses shown in Fig. 3a,b) – A becomes limited by the supply of ATP and NADPH to regenerate the CO2 acceptor RuBP. At this point A will still rise with increasing C_a, but the CO2 responsiveness (the increase in A for a given increase in C_a) is reduced as further increases in A are attributable solely to the inhibition of the oxygenation reaction.
which increases the availability of ATP and NADPH for RuBP regeneration (Long, 1991; Long et al., 2004).

The shape of the A–Ci response curve is a critical model feature that determines the ability of the terrestrial carbon sink to respond to rising C4 and it is affected by model structure and parameterization (Fig. 3; Tables 1, 2). Variation in the initial slope of the A–C4 response is attributable to C4 and the choice of kinetic constants. For this example of a broad leafed deciduous tree PFT in our standard conditions, all models show that light-saturated A appears to be Rubisco limited (RuBP saturated) below a C4 of 500 μmol mol⁻¹ (Fig. 3). As a result the CO₂ responsiveness of A below a C4 of 500 μmol mol⁻¹ is similar for all models. However, as C4 rises above 500 μmol mol⁻¹ differences in model structure and parameterization lead to substantial variation in CO₂ responsiveness. Three models (CLM, ED2 and JULES) stand out for smooth responses of stomatal responses and the availability of appropriate driver datasets, stomatal response to RH or VPD should be adopted. Given advances in the understanding of stomatal responses and the availability of appropriate driver datasets, stomatal response to RH or VPD should be adopted. However, we believe that formulations involving VPD, such as those adopted by ED2, G’DAY and JULES (Table 1) are theoretically preferable because, unlike RH, VPD is directly proportional to water loss, more closely reflects stomatal mechanics (e.g. Aphalo & Jarvis, 1991; De Beek et al., 2010), and is strongly linked to productivity (Lobell et al., 2014; Ort & Long, 2014). In addition, formulations involving VPD, rather than RH, will likely be better able to project the response of vegetation to future climate change.

Rubisco limited and RuBP limited A, but the C4 at which this inflection occurs spans a large range (~300 μmol mol⁻¹; Fig. 3) contributing to the variation in CO₂ responsiveness above 500 μmol mol⁻¹. The variation in C4 at which the inflection point occurs has several causes, but the main drivers of this variation are the choice of kinetic constants (~60 μmol mol⁻¹, Table 2), the J/V ratio, which for a fixed Vc,max sets the inflection point C4 (~125 μmol mol⁻¹, Table 2) and the stomatal model, which determines the C4 at which the inflection point C4 is reached (~175 μmol mol⁻¹; Table 1).

As Vc,max is reduced (Fig. 3b,d), the responses of A to changes in C4 are qualitatively similar but model divergence is constrained. Model variation in canopy level responses to rising C4 (Fig. 3c,d) is also attributable to different approaches to canopy scaling as discussed later. The differences seen here in CO₂ responsiveness are substantial — highlighting the impact of different model representations of the FvCB equations, stomatal model choices and the need to better understand controls on the inflection point of the A–C4 response. The C4 at which the inflection point occurs drives uncertainty in the CO₂ stimulation of A at the C4 that will be experienced in the second half of the century, and it is at this higher C4 where model uncertainty is greatest. This model divergence in inflection point probably contributes to the model differences in GPP reported in the recent Free Air CO₂ Enrichment (FACE) model-intercomparison project (Zaehle et al., 2014).

Recommendation: (7) We need improved understanding and model evaluation of the controls on the inflection point of CO₂ response curves.

Short-term response to VPD

Increasing VPD causes stomatal closure, which decreases C4. The magnitude of the decrease in A resulting from lower C4 is determined by the shape of the A–C4 response as described earlier and shown in Fig. 3. Figure 4 shows the response of A to VPD; model divergence increases with rising VPD, largely due to differences in the parameterization of VPD sensitivity among models. The strong sensitivity of the CLM seen in Fig. 4 is due to the use of RH in the model formulation, and the fact that RH must drop dramatically to obtain increasing VPD with constant temperature, as shown in this plot. There are some models, of which JSBACH in this study is an example, that do not incorporate a stomatal response to RH or VPD (Table 1; Fig. 4). Such formulations were necessary when driving data sets for atmospheric humidity were not available. Given advances in the understanding of stomatal responses and the availability of appropriate driver datasets, stomatal response to RH or VPD should be adopted. However, we believe that formulations involving VPD, such as those adopted by ED2, G’DAY and JULES (Table 1) are theoretically preferable because, unlike RH, VPD is directly proportional to water loss, more closely reflects stomatal mechanics (e.g. Aphalo & Jarvis, 1991; De Beek et al., 2010), and is strongly linked to productivity (Lobell et al., 2014; Ort & Long, 2014). In addition, formulations involving VPD, rather than RH, will likely be better able to project the response of vegetation to future climate change.
Large-scale parameterization of stomatal models has been data-limited, with models typically using one nominal set of parameter values for all C₃ vegetation. A major advance in this area was made by Lin et al. (2015), who collated a substantial new stomatal conductance database and demonstrated a predicted response of the stomatal slope parameter (gₛ) to temperature and consistent differences in gₛ among broadly defined PFTs. This dataset provides a valuable foundation for stomatal model parameterization. However, the coverage of this database is still limited. There is still relatively little information about how gₛ varies among species or genotype, and almost no information on acclimation or plasticity in these parameters in response to abiotic or biotic factors (Way et al., 2011). Models are also sensitive to the minimum stomatal conductance parameter, g₀, particularly under low light and high VPD conditions (Bauerle et al., 2014), but this parameter is poorly quantified.

Recommendations:

1. Models should adopt approaches where gₛ responds to VPD.
2. We need more information about how gₛ and g₀ (or their equivalents) vary among PFTs and in response to environmental drivers.

Short-term response to soil moisture content

Soil moisture availability is a key constraint on A. As soil moisture availability decreases, stomates close, decreasing Cᵢ, and eventually preventing A and transpiration (Fig. 5). Drought can also reduce the biochemical capacity for A, expressed as lower Vₑ,ₘₐₓ and Jₘₐₓ in models, but the relative balance of these stomatal and biochemical limitations is subject to significant debate (Chaves et al., 2009). Current approaches to modeling the effects of soil moisture on A can be classified into several types: empirical reduction factors; hydraulic limitations; physiological approaches; and a simple supply constraint approach (BETHY). The latter assumes that plant transpiration cannot exceed the potential supply of soil water and that plants can photosynthesize provided there is a sufficient water supply (Table 1).

The empirical reduction factor approach involves multiplying parameters by a soil water stress factor (typically denoted β, ranging from 0 to 1) when soil moisture falls below a given model-dependent threshold. Three of the models in our sample used this approach (CLM, G’DAY and O-CN, Table 1 and Fig. 5). However, there is disagreement among models as to whether the β factor should be applied to the stomatal slope parameter, apparent Vₑ,ₘₐₓ or both (De Kauwe et al., 2013). Here, all three models applied the β factor to stomatal model parameters, either the slope (G’DAY and O-CN) or the intercept (CLM), and also to the photosynthetic parameters Vₑ,ₘₐₓ (CLM) or Vₑ,ₘₐₓ and Jₘₐₓ (G’DAY and O-CN; Table 1). Increasing evidence suggests that both stomatal slope and Vₑ,ₘₐₓ are affected by low soil moisture, with the reduction in apparent Vₑ,ₘₐₓ possibly in part due to lower gₑ (Keenan et al., 2010; Egea et al., 2011; Zhou et al., 2013). Several TBMs do include both limitations, but the β factor is tied to the soil water content and therefore models cannot capture the impact of potentially different trajectories of drying and rewetting episodes (Williams & Xia, 2009).
The physiological approaches are based on an understanding of stomatal function and suggest that both metabolic and hydraulic stomatal regulation involves the hormone abscisic acid (ABA), known to promote tolerance against abiotic stress (Jones, 2016). Wilkinson & Davies (2002) proposed a coordinated model of plant responses to stress whereby water stress sensed by the root system stimulates ABA biosynthesis. This signal is then communicated to the guard cells which subsequently induce stomatal closure and reduce water loss. Both roots and leaves synthesize ABA and increasing concentrations of xylem ABA correlate with stomatal closure (Sauter et al., 2001; Wilkinson & Davies, 2002; Christmann et al., 2007).

There are few mathematical descriptions of stomatal control including xylem ABA signaling (Tardieu & Davies, 1993; Dewar, 2002; Huntingford et al., 2015). Tardieu & Davies (1993), combined hydraulic and chemical signaling control of stomatal functioning. The approach of Dewar (2002) is an extension of this approach that also considers xylem embolism and the possible role of combined leaf hydraulic and chemical signaling in addition – or as a possible alternative – to existing root signals. Huntingford et al. (2015) revisited the work by Dewar (2002) and provided a g₅ formulation which depends on only four variables: soil water content, Cₛ, evapotranspiration and net A. This is an exciting approach, however there is an acute need for more empirical data to be able to parameterize and evaluate approaches of estimating g₅ that include ABA.

The TBMs presented here showed dramatic divergence in the response of A to drought (Fig. 5), with the canopy level responses mostly mirroring the responses seen at the leaf level. Whilst much of this divergence could be explained by the different approaches taken by each model (Table 1), the method used to estimate soil water availability also varies between models. Some models estimate soil water availability using soil moisture content (e.g. O-CN) and others using ψ_{soil} (e.g. CLM). Since soil water retention curves are highly nonlinear and dependent on soil type, this can be a major source of model divergence (Medlyn et al., 2016). From a physiological perspective, ψ_{soil} is thought to be more relevant to plant function than soil moisture content. However, the use of ψ_{soil} can result in unrealistic steep responses to the onset of drought unless it is dynamically averaged over the soil profile (De Kauwe et al., 2016).

Uncertainties in root and stomatal responses are major drivers of TBM uncertainty in predicted Net Primary Production across a wide latitudinal gradient (De Kauwe et al., 2013; Dietze, 2014). Improved model representation of drought responses will require evaluation of underlying mechanisms as well as comparison of high level model outputs to ecosystem fluxes during drought periods. Evaluation of the response of key variables associated with alternative stomatal models against field data is needed. This is challenging as evaluation of alternative mechanisms (e.g. the hydraulic and physiological approaches) requires field level manipulation or exploitation of natural gradients and weather events coupled with substantial campaigns that include parallel
measurement of many leaf parameters (e.g. ψ_{leaf}, in situ gas exchange and $V_{\text{c,max}}$) in coordination with plant hydraulic parameters (e.g. soil moisture content, ψ_{soil}, sap flux, hydraulic conductivity and cavitation vulnerability).

Recommendations: (10) Models should respond to soil water availability through ψ_{soil} but variation in ψ_{soil} with soil depth needs to be incorporated. (11) We need rich data sets of coordinated physiological and environmental measurements to enable evaluation of alternative modeling approaches for the representation of the response of A to drought.

Scaling physiology

Earlier, we focused primarily on leaf level responses to environmental and climate change drivers, but a major challenge for model representation is how to scale process knowledge of physiology and leaf level parameterization through time (seasonal change), vertically through the canopy, spatially across the landscape, and also to represent photosynthetic acclimation to rising temperature and C_a. These issues are discussed below.

Effects of day length and season

Photosynthesis responds to short-term environmental changes, but it also shows broad, regular seasonal changes, especially in higher latitudes. In these regions, A halts in the autumn as leaves senesce in deciduous species and decreases as $V_{\text{c,max}}$ is down-regulated during the cold winter months in evergreens. Much of this temporal scaling of A is captured in TBMs through phenology models and the direct temperature effects on $V_{\text{c,max}}$.

While temperature may be a major factor in driving seasonal patterns of A, other environmental cues may be as, or even more, important. Photoperiod is known to have strong effects on leaf phenology, which has indirect effects on A, but has not generally been considered to affect A directly (Way & Montgomery, 2015). However, Bauerle et al. (2012) found that photoperiod was a stronger predictor of seasonal changes in both $V_{\text{c,max}}$ and J_{max} than air temperature. In that data set, $V_{\text{c,max}}$ peaked immediately after the summer solstice, and declined steadily into the autumn, although air temperatures did not peak until a month or more after the solstice. When this effect was accounted for with a photoperiod correction of $V_{\text{c,max}}$ in CLM, the model's ability to capture seasonal patterns of atmospheric C_a was improved (Bonan et al., 2011; Bauerle et al., 2012). Other papers have noted that incorporating a photoperiod scalar with direct effects on $V_{\text{c,max}}$ improves estimates of seasonal carbon fluxes in eddy flux studies, supporting a role for photoperiod in modulating $V_{\text{c,max}}$ (Medvigy et al., 2013; Stoy et al., 2014). In controlled environments, photoperiod is tightly correlated with total leaf protein content, suggesting a tradeoff between the value of protein and the cost of its maintenance and provides a possible mechanistic explanation for the impact of photoperiod on $V_{\text{c,max}}$ (Hannemann et al., 2009). However, not all PFTs show the same response to changes in day length and it is possible that photoperiod corrections may be capturing leaf age effects (Medlyn et al., 2002b, 2007; Busch et al., 2007; Lin et al., 2013; Stinziano et al., 2015). In the tropics, day-length is essentially constant and therefore photoperiod scalars will fail to capture the well-documented photosynthetic seasonality associated with tropical evergreen forests (Doughty & Goulden, 2008). Recent work has shown that higher canopy level photosynthetic capacity associated with new leaf flushing can explain the seasonal dynamics of CO$_2$ uptake in Amazonian evergreen forests (Wu et al., 2016a).

Recommendations: (12) We need to elucidate the mechanism underlying the use of photoperiod scalars to modify photosynthetic parameterization. (13) In order to capture photosynthetic seasonality in tropical evergreen forests, we need to develop new approaches that are capable of coupling prognostic leaf phenology to photosynthetic capacity.

Acclimation to temperature

The short-term photosynthetic responses to temperature covered earlier are themselves sensitive to the temperatures experienced over longer timescales (days to weeks). This longer-term adjustment, known as temperature acclimation, has been widely reported and recently reviewed (Smith & Dukes, 2013; Way & Yamori, 2014). The phenomenon is commonly observed as a shift in the optimum temperature for A (T_{opt}), which can maximize the A at the growth temperature (Berry & Björkman, 1980; Katge & Knorr, 2007; Yamori et al., 2014). The mechanistic process of acclimation and its timescale have not been well described, either within or across species. At the slowest and broadest scales, the process of acclimation is constrained by leaf structure and rates of leaf development and turnover. Leaves that develop under one set of conditions are constrained by their existing anatomy from adjusting fully to a new set of conditions (Campbell et al., 2007). Within a leaf, acclimation rates are driven by the rates at which biochemical and physiological processes can adjust.

At the leaf scale, acclimation results from temperature-driven changes in enzyme abundances and isoforms, and of membrane composition (Yamori et al., 2014). At low growth temperatures, the abundance of Rubisco and other photosynthetic enzymes increases, and some plants produce enzymes with different isoforms, which have different kinetic constants. Under high growth temperatures, plants are thought to increase the stability of the thylakoid membrane, and their capacity for increased electron transport. Also, some plants can produce a more heat-stable form of Rubisco (Crafts-Brandner et al., 1997), and increase expression of heat-shock proteins. Growth temperature also affects the temperature response of respiration, with consequences for net A (e.g. Atkin & Tjoelker, 2003; Way & Yamori, 2014); although the acclimation of respiration may affect plant growth more strongly than that of A for some species (Way & Oren, 2010), this topic lies beyond the scope of this paper and has recently been considered elsewhere (Atkin et al., 2015).
While long-term acclimation of A to temperature has been observed in many species and studies, fewer studies have quantified acclimation at the process level i.e. $V_{c,\text{max}}$ and J_{max}. From observed responses, one may expect seasonal variation in the temperature dependence of J_{max} and changes in the JV_{ratio}. Some confirmation of this was provided by Katte & Knorr (2007) who reanalysed data from 36 (primarily temperate) plants and showed that the optimum temperature of $V_{c,\text{max}}$ and J_{max} increased by 0.44°C and 0.33°C per 1°C increase of growth temperature, and that the JV_{ratio} at 25°C significantly decreased with increasing growth temperature. However, temperature acclimation may result from different processes in different species: $V_{c,\text{max}}$ and J_{max} measured at 25°C were, on average, unaffected by growth temperature across tree species (Way & Oren, 2010) and showed a wide variation in responses across a broad range of plant growth forms (Way & Yamori, 2014).

The representation of $V_{c,\text{max}}$ and J_{max} acclimation based on Katte & Knorr (2007) has been included in some models (e.g. Raddatz et al., 2007; Ziehn et al., 2011; Arneth et al., 2012; Lombardozzi et al., 2015), and recent work suggests that incorporation of both photosynthetic and respiratory acclimation can alter projections of land carbon storage by 10–25 Pg by the end of the century (Lombardozzi et al., 2015; Smith et al., 2016). However, there is clear indication that species differ in the degree to which they acclimate to temperature (e.g. Yamori et al., 2014), and no formulations have yet been developed that capture this variation across a broad range of PFTs.

Researchers have recorded acclimation of different species occurring over periods lasting from 2 d to nearly 2 wk (e.g. Slattery & Ferrar, 1977; Björkman & Badger, 1979; Gunderson et al., 2010). Very limited evidence suggests that the exact timescale of acclimation may not be critical for modeled estimates of GPP as long as it is in a range of c. 3–45 d (Dietze, 2014) but the issue needs to be evaluated more thoroughly before that assumption is widely adopted. A specific timescale does need to be specified in models to calculate growth temperature, and is straightforward to identify experimentally. Katte & Knorr (2007) assumed an acclimation period of 30 d, using an average of day and night temperatures, but it is clear that the bulk of biochemical and physiological adjustments happen over a shorter time period.

Recommendations: (14) Physiologists need to measure thermal acclimation of the photosynthetic traits (e.g. $V_{c,\text{max}}$ and J_{max}) that drive model outputs rather than thermal acclimation of A. (15) We need a better understanding and model representation of thermal acclimation across biomes, specifically the capacity and degree to which species can acclimate, the timescales over which acclimation occurs, and the degree to which temperature acclimation is affected by other environmental variables.

Acclimation to rising [CO$_2$]

Photosynthetic acclimation to elevated C_a is the reduced stimulation of A that often occurs following long-term growth at elevated C_a (Ainsworth & Rogers, 2007). It is the result of a reduction in $V_{c,\text{max}}$ (Rogers & Humphries, 2000; Long et al., 2004; Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Leakey et al., 2009). Notably, the reduction in photosynthetic capacity typically reduces the magnitude of the stimulation of A without completely eliminating it (Leakey et al., 2009). The acclimation response reduces allocation of N to Rubisco, thereby allowing N resources to be combined with the greater carbon supply from stimulated A at elevated C_a (Drake et al., 1997; Long et al., 2004). In fact, a meta-analysis of Ainsworth & Long (2005) found that the decrease in leaf N content observed at elevated C_a was largely attributable to the decrease in Rubisco. Consequently, the magnitude of any photosynthetic acclimation is tightly coupled to the carbon and nitrogen status, and the source-sink balance, of the plant (Medlyn et al. 1999; Rogers et al., 1998, 2009; Ainsworth et al., 2004; Ainsworth & Rogers, 2007; Leakey et al., 2009). For example, in severely N limited systems, acclimation is strong and can be attributed to a nonspecific reduction in leaf N content (Warren et al., 2015), a mechanism that is currently accounted for by some TBMs in this study (Table 1). Acclimation is also strong when the capacity of sinks to use photoassimilate is low, leading to accumulation of leaf carbohydrates and induction of sugar signaling pathways that reduce Rubisco content (Moore et al., 1999). There is evidence for variation in the acclimation response among functional groups that differ in the processes limiting A at ambient C_a (Ainsworth & Rogers, 2007). Acclimation is rarely observed in plants that have Rubisco-limited A at current C_a and elevated C_a. As C_i rises above the inflection point on an A–C_i response curve, A will become RubBP regeneration-limited, and carboxylation capacity will exceed requirements. In this situation, plants grown at elevated C_a typically exhibit photosynthetic acclimation and reduce their investment in Rubisco (Ainsworth & Rogers, 2007).

The TBMs in this review either do not include photosynthetic acclimation to elevated C_a or link it to a nonspecific reduction in leaf N content that is focused on reduced N availability and constrained C:N stoichiometry (Luo et al., 2004). No models currently include representation of the physiological acclimation to elevated C_a described above and widely reported in FACE studies (Long et al., 2004; Ainsworth & Long, 2005; Ainsworth & Rogers, 2007; Leakey et al., 2009). Recent analysis has shown that failing to account for photosynthetic acclimation at elevated C_a leads to an overestimation of yield in soybean (Twine et al., 2013) – a legume where reductions in leaf N content at elevated C_a are theoretically minimal (Rogers et al., 2009). Therefore, the potential for model representation of photosynthetic acclimation to elevated C_a to reduce errors of this type when modeling more N limited systems is likely substantial. In future TBMs we believe it will be important to capture the mechanisms that control physiological acclimation to rising C_a and not just acclimation resulting from reduced N availability. An approach that reduces N allocation to Rubisco when C_a rises beyond the inflection point of PFT-specific CO$_2$ response curves would be a good first step. However, unlike thermal acclimation, no algorithms
have been developed to facilitate inclusion of this concept in TBMs despite the substantial research from FACE experiments. Published data from FACE experiments could potentially be used for development and validation of a new approach.

Recommendation: (16) We need to develop new model representations of the physiological acclimation of photosynthesis to elevated \(\text{CO}_2\).

Leaf to canopy scaling

Due to the high nonlinearity of photosynthetic responses to light, temperature and VPD, scaling \(A\) from leaves to canopy remains an important challenge for models (Jarvis, 1995). Central to this challenge is TBM representation of light penetration and utilization within the canopy’s vertical profile and the vertical scaling of physiology within the canopy. Analogous effects arise from within-canopy variations in temperature and VPD, although to a lower degree (Niinemets & Anten, 2009).

Although the average light intensity typically decreases exponentially with increasing cumulative leaf area index through the canopy, the extent of this decline is affected by the optical properties of individual leaves (including albedo) and how these change with canopy depth, season and leaf age, leaf inclination angle distribution and foliage and canopy spatial clumping (Cescatti & Niinemets, 2004; Kobayashi et al., 2007; Chen et al., 2012; Drewry et al., 2014; Disney, 2015; Wu et al., 2016a,b). Furthermore, due to gaps in the canopy, leaves at a given value of cumulative leaf area index can be sunlit or shaded, further complicating the estimation of light at the leaf surface, leaf absorption, and the subsequent numeric integration of canopy-scale photosynthetic, water, and energy fluxes (de Pury & Farquhar, 1997, 1999; Wang & Leuning, 1998; Kobayashi et al., 2012). Here, the models differ in how these scaling issues are addressed (Table 1) and based on how the canopy is considered, they can be broadly divided between multi-layer models and big-leaf models. Several TBMs have used the ‘big leaf’ approach where a canopy approximately represents a single big leaf with a single set of traits describing the photosynthetic capacity together with characteristic light and temperature response functions (generally by PFT), typically scaled to the canopy as a function of leaf area index (e.g. Amthor, 1994; Sands, 1996). Although sometimes still used (e.g. G’DAY; Table 1), the big leaf model approach consisting of a single ‘leaf’ has been demonstrated to be prone to major integration errors due to lack of consideration of sunlit and shaded leaf area classes (de Pury & Farquhar, 1997; Friend, 2001). These errors were somewhat reduced by developing the ‘two big-leaf’ model approach, which consists of separate handling of a representative sunlit and a shaded big leaf (de Pury & Farquhar, 1997; Chen et al., 1999; Dai et al., 2004). Indeed, separate integration of \(A\) for sunlit and shaded leaf fractions provides a much more accurate integration of carbon and water fluxes (de Pury & Farquhar, 1997; Dai et al., 2004), and this is the approach used in several contemporary TBMs (Table 1).

Big leaf models differ in how whole-canopy \(V_{c,\text{max}}\) and \(J_{\text{max}}\) values are derived (or sunlit and shaded big leaf values are derived), but typically, proportionality of photosynthetic capacity and average light (deemed optimal) is assumed (Table 1; Amthor, 1994; Sands, 1995a,b). Yet, such optimality is not present in nature (Niinemets, 2012). In fact, the decline of photosynthetic capacity through the canopy is much shallower than that for light (Lloyd et al., 2010; Dewar et al., 2012; Niinemets et al., 2015). Such departures from optimality have been considered in some multi-layer models (Table 1), but nevertheless, only a few datasets have been used to develop global parameterizations for multi-layer models (e.g. Carswell et al., 2000; Lloyd et al., 2010). PFT and biome-dependent within-canopy acclimation patterns have recently been highlighted (Niinemets et al., 2015) and could be used in future model development.

Depending on the distribution of foliage inclination angles and spatial clumping, the probability for light penetration varies at a given cumulative leaf area index (Cescatti & Niinemets, 2004; Disney, 2015). Importantly, characteristic canopy features differ among PFT’s given fundamental differences in leaf habit and growth forms (Cescatti & Niinemets, 2004), as a result of land-use, landscape legacies and past disturbance, but few TBMs take this into account. While the multi-layer models can be easily modified to incorporate different clumping and foliage inclination angles, this is much less straightforward for the big leaf models. In fact, differences in canopy architecture are part of the whole-canopy \(V_{c,\text{max}}\) and \(J_{\text{max}}\) values in current big leaf models, i.e. the input values get converted to canopy-scale sunlit and shaded values blurring the definition of \(V_{c,\text{max}}\) and \(J_{\text{max}}\) and making comparison with measured leaf level values impossible. Moreover, leaf optical properties and foliar traits change markedly within the vertical canopy profile (Serbin et al., 2014; Wu et al., 2016b; Yang et al., 2016), but are often assumed static, which will generally lead to improper representation of light interception and utilization. This improper representation will feed forward to the integration of leaf energy balance and carbon uptake. We argue that traits like \(V_{c,\text{max}}\) and \(J_{\text{max}}\) should retain their original physiological definition and that more effort is needed to improve the representation of canopy architecture and subsequent scaling of foliar properties in TBMs. Modifications to the underlying radiative transfer model (RTM) structure and scaling can help to improve the representation of the canopy light environment and modeling of carbon, water, and energy fluxes (Kobayashi et al., 2012), however increasing RTM complexity or vertical layering should not come at the cost of the ability to parameterize the model. A promising means to constrain these approaches is through model-data integration whereby remote sensing observations (e.g. optical, LiDAR) from the leaf to landscape are used to inform the RTM structure and to parameterize across spatial and temporal scales (e.g. Shiklomanov et al., 2016).

Recommendations: (17) TBMs should not use single layer big leaf models. (18) We need better model representation of canopy architecture and vertical scaling of foliar properties, and data to evaluate alternative radiative transfer models and scaling approaches.
Canopy to landscape scaling

There is considerable variability in plant physiological traits across space and time (Serbin et al., 2015; Singh et al., 2015), even within an individual species or PFT (Kattge et al., 2011; Serbin et al., 2014). This variability is driven by differences across vegetation types, photosynthetic pathways, plant successional status, as well as a result of nutrient availability and other abiotic factors. There is a propensity for strong covariance among many key physiological traits as well as fundamental tradeoffs which determine the distribution of these properties across landscapes. Moreover, the nonlinearity in the scaling of model processes from leaf to larger regions requires careful consideration of model parameterization in order to effectively capture the larger-scale emergent responses (Fisher et al., 2015). Parameterization with single, fixed values of photosynthetic capacity likely obscures the true response of vegetation to global change across landscapes, particularly at the current climatic extents of vegetation, thus inadequately capturing critical plant threshold responses to factors such as temperature and precipitation. The links between leaf-level observations, environmental responses and emergent landscape-scale parameterizations needed for TBM is are not straightforward, and as such global parameterizations are commonly derived through the inversion of large-scale datasets (e.g. Kattge et al., 2009; Lin et al., 2015). However, use of such data sets can yield parameterization that is inconsistent with current model structures resulting in unrealistic model outputs (e.g. Bonan et al., 2012). Furthermore, the tradeoffs among variables (e.g. $V_{\text{c max}}$ vs N) are themselves scale-dependent, with slopes changing depending on whether one is looking at an across-PFT evolutionary constraint, a within-PFT community response, or a within-individual phenotypic response (Feng & Dietze, 2014). Care must be taken to not use data constraints at one scale (e.g. global) to drive responses at another scale (e.g. responses to change over time).

The increasing use of trait databases (Wright et al., 2004; Kattge et al., 2011) in modeling activities has started to address some of these issues by leveraging more comprehensive descriptions of traits within models and across PFTs (LeBauer et al., 2013; Dietze, 2014; Fisher et al., 2015). These databases should also be used to more extensively explore trait-environmental relationships. New, model-
data integration frameworks (e.g. LeBauer et al., 2013; Dietze, 2014) can be used to explore the capacity to adequately parameterize existing and new model representations, expand PFT descriptions, as well as identify critical model uncertainties and data gaps and thus prioritize observational and model development activities (Dietze, 2014). Given the current diverse methods used to parameterize photosynthetic parameters (Rogers, 2014), the available data (e.g. Kattge et al., 2011), and new opportunities to markedly expand databases (e.g. Serbin et al., 2012; De Kauwe et al., 2016), we recommend that models should now use common parameterizations for photosynthetic parameters e.g. $V_{c,\text{max}}$ and J_{max} that are constrained by the available data and consistent with known trait covariance, thereby removing unnecessary uncertainty from model projections.

The capacity to utilize remote sensing observations to inform model parameterizations, representations, and trait-environment relationships across spatial and temporal scales is increasing (Dahlin et al., 2013; Serbin et al., 2015; Schimel et al., 2015; Shugart et al., 2015; Singh et al., 2015). Importantly, remote sensing observations can provide a synoptic view of trait variability and functional diversity across landscapes (e.g. Dahlin et al., 2013; Asner et al., 2015; Singh et al., 2015) and identify emergent relationships that could be included in next-generation trait-based models. These observations can also be used as important datasets to benchmark prognostic traits at the relevant spatial scales (e.g. Fisher et al., 2015). Proposed and upcoming satellite missions, including NASA’s Hyperspectral Infrared Imager (HyspIRI) mission concept (Lee et al., 2015) and the European Space Agencies Environmental Mapping and Analysis Program (EnMAP; Guanter et al., 2015), will provide a critical capacity to provide this information for global-scale models.

Recommendations:

19 Data constraints (e.g. trait tradeoffs) must be applied at the relevant spatial and temporal scales. **20** Where possible, TBMs should use common parameterization for photosynthetic parameters. **21** TBMs should make better use of remote sensing data to inform model parameterizations and test predictions.

Conclusion

Realistic model representation of A, and more broadly, plant physiological processes, should be an essential component of TBMs because that same plant physiology is determining the response of the terrestrial biosphere to global change, including the fate of the terrestrial carbon sink. However, many TBMs fail to accurately represent photosynthetic responses to key environmental variables. Here, in a subset of TBMs, we have shown marked model divergence in the representation of key physiological responses for a single well-defined PFT. We have made 21 recommendations that highlight where steps can be taken to improve existing model representation. Our recommendations include areas where immediate steps could be taken, areas where model development is hindered by a lack of physiological data and several important avenues of research that are critical to our understanding that are not currently mature enough to include in model structures. These recommendations are summarized in Fig. 6.

Current model representation of A has a foundation in research conducted in temperate climates. However, other biomes that are climatically sensitive and globally important are understudied, and therefore process representation in these biomes is uncertain; the Arctic and tropics deserve particular attention. The approach taken here, i.e. evaluating how TBMs reproduce physiological responses to key environmental drivers, was found to be extremely informative by all who participated. We feel the process provides a useful template for meaningful collaboration between empiricists and modelers and that including the physiological outputs considered here as readily available diagnostic features would be a highly valuable addition in new TBMs. This study also highlighted the need for a multi-assumption model framework within which the modeling community and domain experts could evaluate different model structures and parameterization approaches and quantitatively evaluate their effect on model outputs. Such a framework would provide a forum where modelers and, in this case, physiologists could reach agreement over the best approaches for representing and parameterizing the sub-processes within complex TBMs.

Acknowledgements

The authors thank the New Phytologist Trust for its generous support of the 9th New Phytologist Workshop – Improving representation of photosynthesis in Earth System Models – held in Montauk (NY, USA) in April 2014. A.R. and S.P.S. were supported by the Next-Generation Ecosystem Experiments (NGEE Arctic and NGEE Tropics) projects that are supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract no. DE-SC00112704 to Brookhaven National Laboratory; D.A.W. acknowledges support from NSERC, CFI and an Ontario ERA award. J.S.D. received support from NSF (DEB-0955771).

Author contributions

A.R., B.E.M. and J.S.D. initiated the study. G.B., M.C.D., B.E.M., L.M.M., S.P.S., S.S. and S.Z. provided model output. All authors contributed ideas, analyzed data and provided written input. A.R. wrote the manuscript with input from all authors.

What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2.

References

Duursma RA, Barton CVM, Lin YS, Medlyn BE, Eamus D, Tissue DT, Ellsworth DS, Mcbrurrie RE. 2014. The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis. Agricultural and Forest Meteorology 189: 2–10.

Fisher RA, Mszala S, Vertenstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven CD, Holm J, Rogers BM et al. 2015. Taking off the training wheels:
the properties of a dynamic vegetation model without climate envelopes, CLM4.5 (ED). Geoscientific Model Development 8: 3593–3619.

Shiklomanov AN, Dietze MC, Viskari T, Townsend PA, Serbin SP. 2016.

No claim to original US Government works

New Phytologist © 2016 New Phytologist Trust

Key words: carbon dioxide CO_{2}, light, soil water content, stomatal conductance, temperature, terrestrial biosphere models, vapor pressure deficit (VPD).

New Phytologist Tansley Medal

For excellence in plant science

Full details, terms and conditions at:

www.newphytologist.org

Calling all early stage career scientists!

Deadline for submissions for 2017: 30 November 2016

Win £2000 (GBP) and have your work highlighted in *New Phytologist*, one of the world’s leading plant science journals (2015 Impact Factor 7.211).

- The New Phytologist Tansley Medal is awarded annually in recognition of an outstanding contribution to research in plant science.
- This is a global competition open to all plant scientists in the early stages of their career and includes both student and post-doctoral researchers with up to five years’ experience, excluding career breaks.

Since gaining/defending their PhD:

- Selection is based on a two-stage process:
 - **Stage 1:** Submit your CV, a personal statement and reference:
 - Deadline: 30 November 2016
 - **Stage 2:** Submission of a single-authored short review intended for publication. Deadline: 31 March 2017

- All competition articles that are accepted after peer review will be published in *New Phytologist* and the Tansley medal winner selected by the judges from these final papers.