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Forests are one of Earth’s critical biomes. They have been shown to respond strongly
to many of the drivers that are predicted to change natural systems over this century,
including climate, introduced species, and other anthropogenic influences. Predicting
how different tree species might respond to this complex of forces remains a daunting
challenge for forest ecologists. Yet shifts in species composition and abundance can
radically influence hydrological and atmospheric systems, plant and animal ranges, and
human populations, making this challenge an important one to address. Forest ecolo-
gists have gathered a great deal of data over the past decades and are now using novel
quantitative and computational tools to translate those data into predictions about the
fate of forests. Here, after a brief review of the threats to forests over the next century,
one of the more promising approaches to making ecological predictions is described:
using hierarchical Bayesian methods to model forest demography and simulating future
forests from those models. This approach captures complex processes, such as seed
dispersal and mortality, and incorporates uncertainty due to unknown mechanisms,
data problems, and parameter uncertainty. After describing the approach, an example
by simulating drought for a southeastern forest is offered. Finally, there is a discussion
of how this approach and others need to be cast within a framework of prediction that
strives to answer the important questions posed to environmental scientists, but does so
with a respect for the challenges inherent in predicting the future of a complex biological
system.
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Introduction

Anticipating forest diversity of the coming
century is an important component of global-
change research. Forests cover more than a
third of the Earth’s landmass. They regulate
atmospheric gases, influence hydrological cy-
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cles, and provide important ecosystem services
to human populations, such as food, fiber, and
fuel. Rising atmospheric CO2, climate change,
introduced species, and land cover modifica-
tion by humans are dramatically altering the
distribution, biodiversity, and biogeochemistry
of forests. Our understanding of these changes
remains rudimentary, despite their relevance
for human society. Progress is limited because it
has been difficult to assimilate the increasing in-
formation now available from field studies and
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models into a coherent framework for predic-
tion. Here we consider the challenges of assim-
ilation and use a specific example to illustrate
how emerging tools can help.

The last decade has brought new approaches
to modeling and computation, and it is timely
to ask how greater exploitation of these ad-
vances might help scientists predict future en-
vironments. Can increased capacity to assimi-
late large amounts of information derived from
diverse sources help us anticipate landscape
change? Although direct calibration of biologi-
cal responses to the full range of environmental
variables is not expected anytime soon, sub-
stantial information already exists on how vari-
ation in climate, land cover, and CO2 affect
individual trees and how these effects can dif-
fer across species and communities. Much of
this fine-scale information on tree physiology
and ecology is hard to merge with the coarse-
scale variation in climate, atmospheric CO2,
and land cover. The availability of new mod-
eling frameworks and computational tools mo-
tivate a fresh look at the prediction problem,
with a focus on how fine-scale processes such
as the growth and mortality of individual trees
are influenced by global-change variables and
how those responses extrapolate to regional
biodiversity.

In this chapter we discuss how prediction is
used not so much as a way of forecasting the
future, but rather as a means for synthesizing
what is known. We briefly review some of the
biological processes critical to how forests re-
spond to global change, how these processes
affect individuals through demographic rates
(growth, survival, and reproduction), and how
to place this understanding in a context that
permits application of some new modeling and
computational tools. We then illustrate a pre-
diction approach with an example from the
southeastern United States. We do not advo-
cate this as a means for precise forecasting, but
rather as a means for application of current
understanding to explore the types of changes
that are important for scientific progress and
stewardship.

Global-Change Drivers

To address how forests might change over the
next century ecologists need to focus on pro-
cesses that are known to be affected by global
change and that have been established as im-
portant to current forest structure. We review
here some of the processes that have been well-
studied and might be integrated into predictive
models.

Climate Change

Climate change is among the most impor-
tant drivers of forest change, yet ecologists find
a daunting challenge to quantify and antici-
pate the exact ways in which changing climate
will affect forests. Correlations between climate
variables and species distributions are only a
beginning (Iverson and Prasad 1998). Forest
responses to climate change are complicated
by biology, because tree populations interact
(Canadell et al. 2007; Roe and Baker 2007).
Competition, natural enemies, and availabil-
ity of mutualists influence species distributions,
and these influences will change as climate and
tree species abundances change.

Forest composition will in large part be deter-
mined by species’ ability to migrate. Changes
in geographic distribution of some species are
already evident (McCarty 2001; Parmesan and
Yohe 2003), including northward range shifts
and local extinctions at low latitudes and al-
titudes for small mammal, insect, and bird
populations (Thomas et al. 2006; Hitch and
Leberg 2007; Moritz et al. 2008). Because of
the long generation time of trees, one of the few
sources of information on potential tree range
shifts comes from fossil-pollen data. These data
show that glacial cycles have caused tree species
to undergo repeated range shifts in the past
(Williams et al. 2004). However, paleoecological
data provide limited insight for contemporary
climate change, because change is now more
rapid than in the past (Huntley 1991), will re-
sult in higher global temperatures than were
experienced over the last several million years
(Crowley 1990), and is occurring in a different
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biological setting. Postglacial migrations oc-
curred in a poorly understood competitive set-
ting, certainly different from that of today. Seeds
from potential immigrant species must estab-
lish in competition with resident species of in-
tact forests. Under modern conditions, migra-
tion capacity of many species will be limited by
low fecundity, restricted dispersal, and reduced
establishment opportunities (Clark et al. 2001,
2003; McLachlan et al. 2005).

Predicting changes in composition within
current species ranges is also difficult. An im-
portant insight from paleoecology is the appar-
ently idiosyncratic response of many species to
past natural warming (Davis 1969; Van Deven-
der and Spaulding 1979; Webb 1986; Prentice
et al. 1991; Tinner and Lotter 2001). Novel
combinations of climate and edaphic factors,
together with dispersal limitation, lead us to
expect the emergence of new forest communi-
ties supporting reorganized food webs (Saxon
et al. 2005; Williams et al. 2007b). The rate and
magnitude of change will be species-specific,
and it will depend on life history (Meunier
et al. 2007) as well as on interactions involv-
ing mutualists (e.g., pollinators, mychorrizae),
competitors, and natural enemies (Ibanez et al.
2006). Further climate change will interact
with disturbance cycles and human land-use,
as shifts in climate put pressure on how so-
cieties use land that is currently covered by
forests.

Rising CO2

The direct effects of climate change will be
mediated by changes in photosynthetic rates
and water use efficiencies under elevated at-
mospheric CO2 (Long et al. 2004). These pro-
cesses are observable at leaf scales, but ex-
trapolation to entire forest stands is difficult.
Increases in photosynthetic rate and produc-
tivity are documented for woody plants, the
magnitude of increase depending on resource
availability (Ogren 1984; Curtis and Wang
1998; Ainsworth and Long 2005). Both mod-
els and experiments suggest that species differ-
ences may be important for overall response

(Bolker et al. 1995; Reich et al. 2001; Mohan
et al. 2007). Forest net primary productivity
is expected to increase under elevated CO2

(Norby et al. 2005), although free air CO2

experiments (FACE) reveal that tree species’
responses differ. For example, loblolly pines
(Pinus taeda) treated with high CO2 contin-
ued to add more wood biomass than control
pines over 8 years, while sweetgum (Liquidambar

styracaflua) at another site showed only a tran-
sient effect, likely due to differences in allo-
cation of resources derived from CO2 (Moore
et al. 2006).

Rising CO2 may affect forest composition as
well as productivity, shifting community struc-
ture through differential effects on matura-
tion and fecundity (LaDeau and Clark 2001)
and seedling recruitment (Hattenschwiler and
Korner 2000; Mohan et al. 2007; Sefcik et al.
2007). Pines exposed to high CO2 mature
at smaller diameters and produce, on aver-
age, three times as many cones as control
trees (LaDeau and Clark 2001). Any popu-
lation responding to changes in atmospheric
gases to this degree would be expected to in-
crease in abundance at the expense of those that
do not.

Introduced and Invasive Species

Species invasions, especially large-scale out-
breaks of exotic pests and pathogens, have oc-
curred with increasing frequency during the
past century (Orwig and Foster 1998) and
can radically alter forest community structure.
Chestnut blight (Cryphonectria parasitica), Dutch
elm disease (Ophiostoma spp.), and gypsy moths
(Lymantria dispar) are examples of introduced
pathogens that have led to severe mortality
and near extinction of their host-tree species.
Current emerging pests and diseases such as
sudden oak death (Phytophthora ramorum), bal-
sam and hemlock woolly adelgids (Adelges piceae

and A. tsugae), white pine blister rust (Cronartium

ribicola), butternut canker (Sirococcus clavigignenti-

juglandacearum), dogwood anthracnose (Discula

spp.), and beech-bark disease (Cryptococcus fag-

isuga) are causing heavy mortality of their
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host species (Burdon et al. 2006; Lovett et al.
2006).

Invasive plant species often affect native
species through competition for resources
(Gorchov and Trisel 2003; Martin and Marks
2006), but some also alter soil properties (Hene-
ghan et al. 2006) or exude chemicals toxic to
benign competitors or tree mutualists (Stinson
et al. 2006). While many invasive species favor
disturbed habitats, intact forests may be most
vulnerable to invasion by late-successional,
shade-tolerant exotics (Martin and Marks
2006). The full impact of invasive species, both
plant and animal, can be difficult to assess be-
cause interactions between exotics and the na-
tive community change can lead to “invasion
meltdowns” (Simberloff and Von Holle 1999),
where the effects of one invader facilitate oth-
ers.

Natural Enemies

Along with the critical threat of introduced
pathogens, trees may interact with existing na-
tive or invading pests and pathogens in new
ways under novel climate conditions (Harvell
et al. 2002; Logan et al. 2003; Burdon et al.
2006). Some of these changes are already oc-
curring. Recent outbreaks of pests in Europe
and North America have been occurring at
higher elevations and latitudes than in the past
(Logan et al. 2003; Battisti et al. 2005; Woods
et al. 2005). Pathogens previously limited by
environmental conditions unfavorable to over-
wintering, reproduction, infection, or other as-
pects of their life cycles may become more
prevalent (Harvell et al. 2002; Bergot et al.
2004; Garrett et al. 2006). Drought and storm
damage can increase the impact of insect
(Powers et al. 1999) and fungal pathogen out-
breaks (Clinton et al. 1993; Desprez-Loustau
et al. 2006). Because of their short life spans
and physiological sensitivity to temperature, in-
sects and pathogens may adapt more quickly
to new climate regimes than their host plants
(Ayers and Lombardero 2000; Garrett et al.
2006). However, plant defense responses to dis-
ease and herbivory will also not remain static

(Garrett et al. 2006; Stiling and Cornilissen
2007), and the rate at which tree populations
can respond to outbreaks will be crucial to
determining future patterns of pathogen and
pest damage. Although many studies agree that
forests generally face increased risks of pest and
pathogen damage under climate change, re-
sponses will depend on the specific combina-
tion of host and pest/pathogen (Cannon 1998;
Roy et al. 2004).

Hierarchical Modeling: A Pathway
to a Predictive Framework

Models cannot capture the full complexity of
interactions that result from the direct effects of
climate change filtered through biological in-
teractions. Instead, the only hope for learning
about the potential responses of forests to cli-
mate change must come from models that can
account for these potentially complex interac-
tions without explicitly describing them. This
is what is meant by “modeling uncertainty.”
Precise specification of the complexity is not
feasible, whereas ignoring the uncertainty and
complexity will be misleading. Substantial in-
formation already exists to aid in model build-
ing, but there are also important gaps in our
knowledge about forest processes. To exploit
what is known, we must therefore develop
model depictions of known processes that can
be combined with appropriate structures for
what is unknown. Hierarchical modeling pro-
vides one way of approaching the problem,
and serves as a basis for Bayesian prediction.
There are many other approaches to predict-
ing forests. Although we focus here on Bayesian
demographic modeling, we review other meth-
ods in the final section.

Anticipating how forests will respond to
environmental changes requires models that
relate environmental conditions, such as pre-
cipitation and temperature, to forest dynam-
ics, such as population change due to mor-
tality and growth. These models must also
be able to project those relationships forward
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Figure 1. Predicted seed production across a
light gradient for Acer rubrum. Light is measured
as the log of canopy area exposed to direct sun-
light estimated from aerial photographs and ground
observations.

under scenarios of future conditions. Further,
to make these predictions meaningful, ecol-
ogists must allow for the fact that the pro-
cesses driving forest dynamics are only partially
known. There is uncertainty about current
conditions used to parameterize the models,
unknown aspects of the processes themselves,
and uncertainty about future conditions. All
can influence predictive distributions for num-
bers, abundances, and geographical ranges of
species. A predictive distribution combines the
deterministic relationships that are sufficiently
well known to be expressed as functional forms
with the uncertainty that comes with observa-
tions, specification of the model, and estimation
of parameters.

Prediction can apply not only to actual fu-
ture states, but to model and data implications
for any time or place where data have not
been collected. For example, using a model that
was fitted with light as a covariate (Fig. 1), we
can construct predictive distributions of a de-
mographic response to light intensities not in-
cluded in the analysis. The data used for model
fitting here include a range of light values but
do not necessarily include the precise values
where predictions will be made. The predictive
distribution therefore needs to integrate over
uncertainty in the estimates of the parameters,
the observations, and in the model specifica-
tion, and can thus predict the demographic re-

sponse over a more continuous range of light
values. In this section, we summarize the ba-
sic conceptual framework for prediction. We
then discuss how simulation models are used
in prediction and how different sources of un-
certainty enter into this analysis. This section
concludes with remarks on how to evaluate the
predictions produced by these models.

Although there are many important ways
to quantify the processes important to forests,
from biogeochemical changes to standing
biomass, the prediction process we describe
here focuses on demographic rates. Changes in
demography have a long history in assessments
of environmental impacts on population dy-
namics and health and can indirectly describe
chemical storage and biomass. If we want to un-
derstand the past and future of our own species,
we turn first to demographic rates. The per
capita population growth rates used to summa-
rize the population dynamics of nations are rou-
tinely broken down into birth, death, and mi-
gration rates. Epidemiological data are applied
to problems of nutrition and disease, with de-
mographic rates being the response variables.

Demographic rates of trees provide an
important scale for analysis and prediction.
Seed bank persistence, seed germination, tree
growth, survival, fecundity, and dispersal are
the basic demographic rates that can be used
to understand the impact of global change on
individual trees, and by extrapolation to pop-
ulations and the forest community. By quanti-
fying how these rates relate to important envi-
ronmental variables as well as to one another
(the number of seeds influences the number
of future seedlings, and so on) we can be-
gin to capture the behaviors of forests as dy-
namic systems, which is essential to substantive
prediction. Forest ecologists have long under-
stood the value of modeling at this scale, and a
number of important forest simulators use de-
mography as the key dynamic engine for their
population forecasts (e.g., FORET, Sortie, ED).
We extend this tradition to fully embrace the
Bayesian structure for both inference and pre-
dictive simulation.
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Coupling Bayesian Inference
and Prediction

We focus on the Bayesian framework be-
cause it offers a conceptually coherent frame-
work for prediction (Clark et al. 2007a). It is not
restricted to a particular model but rather ac-
commodates many types of data and processes.
Traditionally, model forecasts have focused on
forward simulation, starting with parameter
values and scenarios of change as inputs and
producing simulated data as output. Param-
eterization these models, however, was rarely
conducted in a way that properly anticipates
the role of uncertainty used for prediction (for-
ward simulation from the model). For example,
estimates of model parameters often assume
a different model, sometimes even a different
scale, from the model used to make predic-
tions (e.g., temperature or CO2 dependence
at the level of leaves is often used as a basis
for simulating canopy response to atmospheric
CO2).

Extrapolation is easily accomplished under
a Bayesian framework where all model pa-
rameters are considered random variables. By
describing the distributions of those random
variables (such as a model for leaf response to
CO2), fine-scale relationships can be integrated
to produce predictions for larger scales. The
result is a set of predictions that are coherent
with model fitting—we know where the uncer-
tainty comes from, because there is a quan-
titative link between data, process, and predic-
tion. The Bayesian approach encourages a view
of uncertainty with specific sources, including
process, parameter estimates, and observation
errors. Process error is especially important be-
cause process models are typically crude, rep-
resenting only a small subset of all known and
important interactions. Process error uses
stochasticity to account for the variation in pro-
cesses due to interactions that have not been
formally modeled.

This hierarchical framework involves speci-
fying the relationships between different parts
of the model in the form of conditional proba-

bilities. That is, we understand one component
of the model given (or “conditioned on”) the
status of other components. The data are con-
ditional on an underlying process. Likewise, a
process at one scale might be conditioned on
a different process at another scale. For exam-
ple, tree growth depends on light available to
the tree. Light availability might, in turn, de-
pend on interception by canopies of other trees.
One of the key strengths of the Bayesian frame-
work is the flexibility with which models can be
constructed to represent complex problems by
combining these relatively simple conditional
probabilities. This approach has the flexibility
to incorporate numerous sources of data, model
output, indirectly observed variables, observa-
tion error, and prior information about all parts
of the problem that have been gathered from
sources such as literature or expert opinion.
The key components of such analyses are here
termed process models, data models, and parameter

models (Clark et al. 2003).
In our case, process models represent our un-

derstanding of how environmental variables in-
fluence tree demography. A demographic rate
that cannot be measured directly can be rep-
resented by a process model informed by rele-
vant data. For example, estimates of fecundity
in trees may be informed by seed-trap data,
a model for how seeds disperse, by observa-
tions of flowering, a model of tree maturation,
and by data on tree sizes (Clark et al. 2004).
Geometric models of canopy light transmis-
sion can be related to remote sensing imagery
and canopy-status observations to estimate the
canopy light environment, and to hemispher-
ical photography to estimate understory light
conditions. Process models can be as simple as a
linear relationship or as complex as a system of
nonlinear differential equations, such as those
used for the atmosphere or hydrological cycles.
The process model itself is uncertain, and we
would like that uncertainty to be reflected in
predictive distributions. Model error is particu-
larly hard to quantify, because the concept of a
“correct” model rarely has clear meaning in en-
vironmental science. Processes are influenced
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by many factors, only a subset of which will be
specified.

Data models connect observations with an
underlying process. Multiple data sets might
inform the same process. For example, a pro-
cess model for tree growth may be informed by
both inventory data and tree increment cores,
with each data set having its own data model
accounting for the different biases and error
distributions (Clark et al. 2007b).

Parameter models, the core of model estima-
tion, describe distributions for all model param-
eters. The posterior distribution of parameters
used for inference about parameter significance
combines the likelihood distributions with pri-

ors, distributions based on prior knowledge (or
uniform distributions when no prior knowledge
is assumed). Further, parameter models can ac-
count for hierarchical relationships in the mod-
els that may have important influence on infer-
ence. For example, we expect the parameters
linking growth to light to differ among indi-
viduals, which could warrant a random-effects
prior that quantifies how likely two individuals
are to differ in this growth–light relationship.
Inference entails estimates of these different
contributions to the overall model fit. Predic-
tion combines these estimates with scenarios
that involve the model predictors, or “explana-
tory variables.”

Using Models for Predicting
Future States

Moving from inference to predicting future
states adds yet another source of uncertainty to
the predictive process—that associated with a
hypothesized scenario. If climate variables en-
ter as explanatory variables for tree growth, and
we want to predict growth in a different climate
setting, we must recognize the uncertainty as-
sociated with climate change. If the model is
dynamic, then even at the outset of a predictive
simulation, the initial conditions are uncertain.
Initial conditions may be set to observations
(see later in the chapter), but many variables
may be unobserved. Boundary conditions are

often based on scenarios about the future state
of the system. Scenarios may include the best
estimates of experts or the output of other mod-
els, having uncertainties of their own. Bayesian
analysis allows for uncertainty in initial states
and boundary conditions. Ideally, predictive
distributions integrate uncertainty from all of
these sources.

BOX 1: A taxonomy of uncertainty could include
sources of error summarized here:

• Process error. Uncertainty in the process model.
Variation affects dynamics and can com-
pound over time.

• Measurement error. Discrepancy between obser-
vations and true process state. Measurement
error can, but does not have to be propagated
to predictions.

• Random individual and temporal effects (RITES).

Individual effects refer to uncertainty that
is associated with individuals (such as differ-
ences created by genetic variation) and over
time. Temporal uncertainty can apply to all
individuals at once, but changes over time
(e.g., seed masting in trees).

• Initial condition uncertainty. Error in the specifi-
cation of the initial state of a predictive sim-
ulation.

• Scenario uncertainty. Uncertainty in the vari-
ables that describe predicted scenarios (e.g.,
temperature means over the next 100 years).

It is important to interpret predictive dis-
tributions appropriately. Some ecological pro-
cesses are highly predictable, for reasons that
are well understood. Leaf-area index can often
be predicted based on local hydrology (Grier
and Running 1977). Other processes, such as
long-distance dispersal, are inherently unpre-
dictable despite confident parameter estimates
for dispersal kernels (Clark et al. 2003). Still
other processes depend on uncertain scenarios,
such as CO2 acclimation.

Because many climate-change phenomena
are complex, with many potential sources of
error, predictive distributions may often be less
useful for anticipating the future than they
are for analyzing how different sources of
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Figure 2. Posterior mean estimates of latent states (green dots) and predictive intervals
for low (black) and high (red) canopy exposure (λ is an estimate of the canopy area exposed
to full sunlight). Black predictive intervals for low light, from narrow to wide, are parameter
uncertainty (dashed), random individual effects (dotted), year-to-year variation (dashed), and
process error (not visible). For high light (red) only predictive mean and year-to-year variation
are shown.

uncertainty contribute to our understanding of
a process. This understanding can then be used
to prioritize research needs and direct future
field research and experiments designed to re-
duce forecast uncertainty.

The Inference Stage

Predicting forest change requires a series
of steps that link observations on individual
trees to computer simulations of entire forest
stands under anticipated climate scenarios. To
illustrate these concepts we discuss an appli-
cation where hierarchical models were fitted
to data, including estimation of measurement
error, process error, and parameter error, all
of which are propagated to predictive distribu-
tions based on scenarios for soil moisture.

Prediction begins with inference, the estima-
tion of parameter values for the model. Figure 2
shows how different sources of uncertainty con-
tribute to a predictive interval around the rela-
tionship between the diameter of a tree and its
growth rate. In this figure growth rates of adult
trees are predicted for a range of diameters at
two light levels for Quercus rubra. For this exam-
ple of diameter growth, the size of the predictive
intervals illustrates how year-to-year variation
dominates over individual differences, parame-
ter uncertainty, and model uncertainty. In other

words, annual variation is large and not well de-
scribed based on the covariates in the model,
which include light availability, tree diameter,
and growth the previous year. However, indi-
vidual differences and parameter uncertainty
are relatively small. This combination of pro-
cess and uncertainty will be further discussed
in an example that follows.

An analysis of uncertainty can help us un-
derstand population dynamics even when pro-
cesses are poorly specified. Figure 3 shows how
predictive intervals can be used to assess good-
ness of fit. The predictive distributions shown
in Figure 3 can be used to simulate growth rates
of trees, averaging over all sources of variation
(dashed lines in Fig. 3). For comparison, the
green lines in Figure 3 show growth trajecto-
ries of actual trees based on tree rings measured
from increment core samples. The bounds of
the predicted growth trajectories are not based
on models of how age relates to diameter in-
crement. Instead, these trajectories were esti-
mated purely from the process model of growth
over time, given uncertainty. Every year growth
is estimated from covariates and the diameter
change is calculated.

To incorporate species interactions in the
model, we use a simulator where trees intercept
light, thereby shading their neighbors. Scenar-
ios involving soil moisture fluctuation allow us
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Figure 3. Comparison of increment data from tree rings (green) and predictive distribu-
tions of tree diameter.

to explore the consequences of climate change
in the context of competition among trees for
light. We use the Scalable Landscape, Inference
and Prediction (SLIP) simulator (Govindarajan
et al. 2007) which combines the demographic-
rate models to project individuals forward.
SLIP differs from other forest simulators (e.g.,
SORTIE, JABOWA, FORET) in that it incor-
porates uncertainty estimated at each stage of
the model described earlier. In the SLIP predic-
tions, interacting individuals grow, survive, and
reproduce using the same model fitted to data
over a landscape grid of 512-by-512 meters. We
incorporate not only responses to covariates but
also the estimated variation across years and
among individuals (RITES, see Box 1) and un-
certainty in the processes model. Trees compete
for light, and the largest trees create the light
environment experienced by smaller trees.

To complete the path from data to predic-
tion under changing climate, we can compare
model runs with current climate variables (tem-
perature and soil moisture) with those run un-
der scenarios that reflect anticipated shifts in
southeastern climate patterns. This final sec-
tion describes how SLIP simulated forest dy-
namics under a scenario of periodic extreme
drought.

A Drought Example

Droughts are predicted to occur in the
southeastern United States with greater fre-
quency and intensity in the coming century
(Mearns et al. 2003). The structure of forests
in the Southeast may depend on whether
or not and which deep-rooted forest trees
are buffered from increasingly arid climate. If
adults remain connected to a deep water sup-
ply, while shallow-rooted seedlings fail to sur-
vive, we could experience a gradual shift to
Mediterranean-like conditions.

For a simple demonstration, we vary soil
moisture stochastically, with an underlying pe-
riodic signal (a simple sine function with ran-
dom noise). As a control, we assumed a mean
and variance for the observed soil-moisture
data that are uncorrelated across years. In these
simulations we include soil moisture effects
only at the stages of germination and seedling
growth and mortality. These simulations ad-
dress the extent to which large trees might
be buffered against increased aridity, whereas
shallow-rooted seedlings are not.

Figure 4 shows modeled relationships be-
tween the seedlings of three different species
(corresponding to the three columns), Acer
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Figure 4. Example simulations of the response of seedling growth to soil moisture and light for three
species—A: rubrum, L: tulipifera, and Q: rubra. The three rows show (A) the deterministic relationship
between covariates and growth, (B) an instance where process error has been drawn for each individual
from the process-error distribution estimated from data, and (C) where instances of individual effects as well as
process error are drawn from their respective distributions. Error is represented by drawing random deviations
from the error distributions, and therefore are examples of the uncertainty and not the actual estimated error
terms in order to visualize the variance due to error.

rubrum, Liriodendron tulipifera, and Q. rubra, and
light and soil moisture. These relationships
were estimated from data in field experiments
(Ibanez et al. 2007) using a logistic regression.
The z-axis marks predicted annual seedling
growth in centimeters of height, and the x-

and y-axes mark percent of total solar ra-
diation reaching the understory and percent
moisture content in the soil, respectively. The
first row of Figure 4 shows the process model
(the deterministic model without uncertainty).
Light has a strong positive effect on growth,

while soil moisture has a more subtle effect.
These relationships differ for different species.
In row 2, every point on the graph was changed
by adding a random variable drawn from the
distribution of process error, so that for ev-
ery combination of light and soil moisture,
possible changes in expected height due to
process error are illustrated. Under poor con-
ditions, even with positive values for process
error, there is no growth (the flat plateaus un-
der low light or low soil moisture values). Note,
too, that different species have different levels
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of process uncertainty. Q. rubra shows greater
differences from the deterministic process we
modeled. That is, for Q. rubra light and soil
moisture fail to capture many of the determi-
nants of seedling growth, whereas for L. tulip-

ifera, soil moisture and light explain a good deal
of seedling growth. In the third row random
draws from both process error and individual
effects have been added to the deterministic
value of growth predicted with the environ-
mental variables. This illustrates potential de-
viations from the deterministic kernel due to
unmodeled processes.

Given the large number of seedlings and the
highly dynamic understory-light environment
of intact forests, inferring large-scale population
dynamics under periodic droughts from the es-
timated growth of seedlings alone would be un-
realistic. Seedlings grow to become adult trees,
which shade seedlings, and individuals attain
adulthood (or not) due to many processes, all
of which differ between species. To understand
how the entire forest system will respond to
drought, therefore, we need to integrate these
effects over the behavior of all forest trees, not
just seedlings.

We ran five replicates of the control and the
drought treatment over 200 simulated years,
with a starting forest based on the observed
abundances and sizes of 30 tree species from
the Duke Forest in central North Carolina. We
found a clear response to drought in the forest,
but also resilience in key community-level pat-
terns (Fig. 5). Seedling densities (Fig. 5a), as pre-
dicted by our inference based on process mod-
els, oscillated with soil moisture levels. Although
the roughly 50% drop in seedling densities did
translate into fewer saplings (which includes
stems between 0.5-m and 2-m tall) (Fig. 5b), the
duration of the drop in sapling number and the
speed of recovery at the end of drought showed
a diminished response as compared to that of
seedling densities. This modeled tolerance of
periodic drought is even more pronounced as
the size class of trees increases. Adult densities
and growth showed little response to drought
cycles (Fig. 5c). Although stem numbers did

fluctuate, they did so very close to the range
of the control runs. Thus, adult stems were not
reduced to savannah-like densities, even though
seedling mortality during droughts was high.

In order to draw inference for this ex-
periment, we return to how uncertainty en-
tered the model and the simulations. In this
example, we ran five replicates of the two
treatments. These repeated runs, although
not extensive, show how sensitive our infer-
ence is to the model’s stochastic components.
Process error and RITES were included in
these runs, so that at the scale of individu-
als and years, uncertainty entered in every vi-
tal rate, and did so differently for different
species. Despite these sources of uncertainty,
the abundances and densities of tree life-history
stages were remarkably consistent over the
runs.

To generate more informed predictive dis-
tributions, we would need to run the simula-
tions more times, but the trend is obvious in
this example. The patterns we see in densities
over time also seem robust to the high degree
of stochasticity modeled here—drought treat-
ments behave similarly, and control runs behave
similarly across replicates. Importantly, how-
ever, we included no uncertainty in our initial
conditions or predictive scenarios. We assumed
a specific starting forest composition and con-
structed a soil-moisture regime as input that im-
plied no uncertainty in either soil moisture over
the next 200 years or in the forest’s initial com-
position. We know that changes in sequence,
frequency, and intensity of the drought scenar-
ios modeled would strongly influence how the
forest behaves (which will be discussed in more
detail in the concluding section).

A single experiment does not have to ac-
commodate every potential source of un-
certainty. Any inference drawn from model
results, however, must be restricted by how un-
certainty enters the model. The drought sim-
ulation just given tests a hypothesis focused on
a specific mechanism: Could adult trees that
are not affected by rare drought events buffer
the overall forest from droughts that damage
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Figure 5. Time series for five separate 200-year simulation runs with drought treatments (red lines) and
without (black lines). Note log y-axes for saplings.

seedlings and saplings? We can deduce from
these experiments that more frequent drought
or longer drought periods might eventually in-
fluence adult population and forest biomass.
The important inference for this simulation is
that the forest as a whole may be buffered from
extreme drought events that only affect early
life-history stages. Results such as this one do
not contribute much to an overall prediction of
forest change, but can contribute to a toolbox of
information essential for developing forecasts.

The final section discusses how forecasting can
combine data, models of ecological processes,
and climate scenarios to create a protocol for
prediction.

A New Forecasting Protocol Based
on Process

The root of model-based prediction lies
in model-based inference. The goal of the
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inference stage of analysis is to fit a determinis-
tic core of a model (e.g., “how trees respond to
the environment”) and to partition unexplained
variance in a way that can help the model real-
ize the variety of possible futures based on how
little we know now. The importance of the de-
terministic portion of a model for prediction is
well understood by ecologists (it’s our job), but
the impacts of the error and how it is partitioned
are less appreciated. Most ecological models in-
tended for forecasting drop the residual error
entirely, or treat the error as additive Gaussian
white noise. There is a growing recognition of
the need to include autocorrelation in space
and time, but modern statistical methods also
allow for the inclusion of nonadditive effects,
such as the variation of model parameters in
space and time as well as hierarchical random
effects at all levels, down to every tree having
its own parameters, as shown in the preceding
example. Also, as demonstrated in our exam-
ple, data models allow the separation of various
forms of measurement error from process error,
which is critical in ecology, as variability is often
dominated by true differences among individu-
als, sites, or samples rather than measurement
error. The treatment of variability may not only
affect the predictive variance, but also the mean
and even our understanding of the dynamics of
the process, such as the mechanisms for species
coexistence (Clark et al. 2007a).

Moving from inference to prediction intro-
duces a number of additional sources of uncer-
tainty. Forwardsimulation requires the specifi-
cation of both initial conditions, which describe
the initial state of the model, and boundary con-

ditions, which describe the time-evolution of
model constraints. The specification of initial
conditions is often based on data, but the ini-
tial values of all state variables are rarely ob-
served completely, and there are often multiple
data sets that can inform the initial state. De-
termining the initial conditions can therefore
be a challenging problem of statistical infer-
ence at the start. Although this type of statistical
modeling is not currently common in the eco-
logical literature, it is a backbone of inference

in meteorology where it is referred to as data

assimilation. The classic tools for this inference
in data assimilation have been variants of the
Kalman filter (Kalman 1960), which estimates
the dynamics of a system based on sparse mea-
surements of its characteristics. Newer hierar-
chical Bayes approaches are both more flexible
and less complicated (Wikle and Berliner 2006).
Boundary conditions, on the other hand, are
often developed based on scenarios about the
future state of the system, and thus all fore-
casts are made conditional on these scenarios.
Scenarios may include the best estimates of ex-
perts, maximum and minimum range bound-
ing scenarios, or the output of other models
with their own uncertainty. For example, the
Intergovernmental Panel on Climate Change
(IPCC) uses expert opinion and socioeconomic
models to develop a standard set of climate-
change scenarios that are boundary conditions
for gas emissions, land-use change, and de-
velopment within general circulation models
(GCMs) (IPCC 2000, 2007). The outputs of
GCMs routinely become the input scenarios for
forest biogeochemistry and biodiversity models
(e.g., VEMAP). Obviously, scenarios and the
forecasts made from them cannot be expected
to be true, since the information provided by
forecasts can alter the behavior of the agents
involved, but they are useful precisely because
they provide us with information that allows us
to alter our behavior.

Another critical component of forecast un-
certainty comes from model choice. Model
choice error is particularly hard to quantify,
since all probability statements are conditional
on the model implemented or upon a finite set
of alternate models, rather than the infinite set
of all possible models. Information theory and
model selection can help us choose between
alternate model forms, or to weight models
for model averaging (Burnham and Anderson
2002); however, such statistical measures are
not a substitute for an experts understanding of
the system nor do they guard against errors in
our conceptual understanding of the system. It
is often a useful exercise to compare forecasts
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generated by different models produced by dif-
ferent research teams; however, such models
are never truly independent samples since they
often encapsulate the same understanding and
even share submodels as a whole [e.g., almost
all ecosystem models estimate photosynthesis
using the Farquhar et al. (1980) model].

Finally, a critical component of forecasting is
to understand the predictability of the process
and the factors limiting better prediction. Some
ecological processes are very predictable. For
example, leaf-area index tends to vary little for
closed-canopy forests around the world. Other
processes, such as long-distance dispersal, are
inherently unpredictable: once the parameters
involved are reasonably constrained, collecting
reams of additional data will not drastically im-
prove prediction. Ecological processes also vary
widely in the temporal horizon for accurate
prediction. Some processes are clearly sensi-
tive to initial conditions, while others, such as
forest succession, tend to have strong feedbacks
that cause dynamics to converge over time. Pro-
cesses also differ in the extent to which we can
consider their parameters fixed versus varying
in time and space, especially in the face of novel
environmental change. The analysis of mod-
els with the proper propagation of error will
itself be a critical component of understand-
ing the main sources of uncertainty. This un-
derstanding can then be used to prioritize re-
search needs and direct future field research
and experiments designed to reduce forecast
uncertainty.

It is easy to become overwhelmed by the ur-
gency and complexity of current changes in
ecological systems. By working together with
climate scientists, forest ecologists and man-
agers, statisticians, and computer scientists, and
paying careful attention to details of ecological
systems and how they extrapolate to produce
patterns in communities and regions, we can
develop forecasts, learn from them, improve
them, and redevelop them in the hope that
along the way, our informed answers will have
a positive impact on how our society responds
to these changes.
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