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Abstract Centennial-scale climate-ecosystem feedbacks are a major source of predictive uncertainty for
land-atmosphere fluxes of energy, carbon, and water. Accurate representations of plant functional type
(PFT) distributions through time and space are required for modeling centennial-scale feedbacks within Earth
system models (ESMs). We tested the ability of ESMs from the Coupled Model Intercomparison Project Phase
5 (CMIP5) to capture historical PFT distributions at the time of Euro-American settlement in the Northeastern
United States against a new subcontinental-scale data set of historical tree abundances derived from forest
composition surveys. To identify and diagnose errors in ESM-simulated PFT distributions and quantify
impacts on modeled albedo, net primary productivity, and transpiration, we analyzed actual and modeled
PFT distributions with respect to historical mean annual climate and modeled elasticity among PFTs, climate,
and vegetation-atmosphere fluxes. Historical PFT distributions were poorly matched between ESMs and the
settlement-era data, often due to inaccurate PFT-climate relationships within ESMs, particularly for evergreen
trees. Some models exhibited large local, but regionally compensating, errors in simulated albedo, net
primary productivity, and transpiration due to inaccurate PFT distributions, while others had systematic
regional biases in vegetation-atmosphere fluxes. Internal variable elasticity varied among ESMs, and these
differences closely corresponded to model skill in predicting PFT distributions. New historical benchmarks
like the settlement-era vegetation data provide opportunities to confront ESMs, parse sources of error, and
improve simulations of historical and future vegetation-atmosphere feedbacks.

1. Introduction

Substantial uncertainty in projections of future climate arises from processes with long system memories at
multiple temporal and spatial scales (e.g., between ecosystems and climate), particularly at multidecadal to
centennial timescales [Friedlingstein et al., 2006, 2013; Ahlström et al., 2012; Piao et al., 2013]. Given that these
are the timescales most relevant to long-term infrastructural adaptation in response to global climate change,
there is a large societal demand to improve predictive skill [Meehl et al., 2009]. A central challenge to improving
Earth system models (ESMs) at decadal to centennial timescales is the paucity of data sets informing land-
atmosphere feedbacks. Assessing the ability of ESMs to capture historical ecosystem states—e.g., the land
surface state at 1850 as a preindustrial baseline in Coupled Model Intercomparison Project Phase 5 (CMIP5)
modeling [Taylor et al., 2011]—and the effects of those states on modeled ecosystem-atmosphere feedbacks
is an essential step toward improving the predictive power of long-term 21st century ecosystem-climate feed-
back trajectories. Reconstructions of historical forest composition provide a critical benchmark both for model
initialization and characterization of transient modeled states, particularly at regional spatial scales where the
largest uncertainties lie for future climate and ecosystem projections [Sitch et al., 2008].

Initial land surface states within the CMIP5 experiment are typically based on models of potential vegetation
[Ramankutty and Foley, 1999] due to the scarcity of preindustrial land cover data. Surface states are then
modified by land use changes inferred from population and economic data [Pongratz et al., 2009; Hurtt
et al., 2011]. However, modeled potential vegetation maps are constructed with implicit assumptions about
species-climate relationships. Factors such as land use, dispersal limitation, natural disturbance, decadal- to
centennial-scale climate variability, and other historical contingencies may prevent species from filling their
potential niche [Rhemtulla et al., 2009; Thompson et al., 2013]. Hence, use of modeled potential vegetation for
ESM initialization likely creates systematic and poorly understood biases in 21st century simulations.
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A new regional reconstruction of historical plant functional type (PFT) distributions from the Euro-American
settlement-era vegetation (ESV) data covers the Upper Midwest through the Northeastern United States
[Goring et al., 2015] (Figure 1) and provides the opportunity for detailed evaluation of PFT simulation accuracy
in the CMIP5 preindustrial control experiment and the effects on simulated ecosystem-atmosphere feedbacks.
ESV data are compiled from forest composition data collected by surveyors working for individual townships (in
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Figure 1. Reconstructed distribution of evergreen and deciduous PFTs at the time of Euro-American settlement. The Euro-
American settlement vegetation (ESV) data set represents the state of vegetation at the time of Euro-American settlement,
from circa 1700 on the eastern seaboard, to as late as 1907 in the Upper Midwest. This data set was digitized from Public
Land Survey and proprietor township records and converted to a spatially continuous 0.5° grid through a Bayesian hier-
archical statistical model. Fractional values represent the proportion of individual trees relative to total number of surveyed
individuals.
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New England) and the U.S. General Land
Office [Cogbill et al., 2003; Thompson et al.,
2013; Goring et al., 2015]. The ESV data col-
lected in this time transgressive survey
reflect forest composition from the early
1700s to 1907, with the earliest records from
the east, and the latest records in northwes-
tern Minnesota. While Native American land
use existed in this region prior to the time
period captured by the aggregated ESV data,
these impacts were highly patchy and
restricted to within a few kilometers of settle-
ments [Munoz et al., 2014], well below the
spatial resolution of the ESV data used here
(8 km, aggregated to 0.5°). As such, the ESV
data set describe the percent composition
of tree taxa on the landscape prior to major
land use change following settlement
[Goring et al., 2015].

The ability of CMIP5 models to capture presettlement PFT composition is critical to accurately simulate local
feedbacks with climate, and in some cases for broader regional processes. Whether the land surface is domi-
nated by evergreen or deciduous PFTs acts as a primary control on fluxes of energy, carbon, and water
between the land and atmosphere, due to fundamental differences in the phenology of these two PFTs
[Bonan, 2008]. For example, during winter the dark surface created by the perennial leaves of evergreen trees
creates a much lower albedo compared to leafless deciduous trees and snow-covered ground, increasing the
amount of incoming radiation that is absorbed at the surface, in turn increasing the local seasonal tempera-
ture [Hall, 2004; Cheddadi and Bar-Hen, 2009].

Our analysis focused on answering three questions: (1) How accurate are the CMIP5 ESMs at representing pre-
industrial PFTs within this region? (2) Are differences among the ESV data set and CMIP5 models due to dif-
ferences in modeled climate or the climate-vegetation relationships encoded within the models? And (3)
how does inaccurate representation of PFTs within this region affect key vegetation-atmosphere feedback
variables, i.e., albedo, net primary productivity, and transpiration?

We evaluated biases in albedo, net primary productivity, and transpiration at a regional scale resulting from
inaccurate PFT distributions in ESMs relative to the ESV. We further quantified the elasticity among variables
related to PFT distributions, climate, and land-atmosphere flux within CMIP5 ESMs, which allowed us to iden-
tify within-model sources of error in PFT mapping by quantifying the extent to which changes in one variable
initiated changes in other variables. Through this systematic analysis, we determined regional CMIP5 accu-
racy for preindustrial PFTs, diagnosed the reasons why some ESMs incorrectly simulated PFTs, and assessed
the impact that this error had on land-atmosphere flux.

2. Methods
2.1. ESV and CMIP5 Forest Composition

The ESV data used in this analysis were developed from Public Land Survey (PLS) records in the Upper
Midwest [Liu et al., 2011; Goring et al., 2015], and from Town Proprietor Surveys (TPSs) in New England,
New York, and Pennsylvania [Cogbill et al., 2003; Thompson et al., 2013]. Original survey records consist of
counts of representative trees within townships (the TPS), and a standardized data set representing the
closest two trees at section and quarter-section points, aggregated to an 8× 8 km grid (the PLS) [Goring
et al., 2015]. The data sets were combined using a multinomial probit model [McCulloch and Rossi, 1994]
for the counts with latent Markov random field spatial models for each taxon with neighborhood structure
defined by the four nearest neighbors of each cell [Rue and Held, 2005], also known as an intrinsic conditional
autoregressive model [Banerjee et al., 2004] to produce estimates on an 8× 8 km grid across the entire
Northwestern U.S. with uncertainty [Paciorek et al., 2016].

Table 1. List of ESV Tree Genera Aggregated Into Evergreen and
Deciduous PFTsa

Evergreen PFT Deciduous PFT

Cedar Ash
Fir Basswood
Hemlock Beech
Pine Birch
Spruce Black gum

Elm
Hickory
Ironwood
Maple
Oak

Other hardwood
Poplar

Tamarack
Walnut

a“Other hardwood” included Buckeye, Cherry, Dogwood,
Hackberry, Mulberry, and Sycamore, which were present in low
abundance across the spatial domain.
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ESV taxa were aggregated to the fraction composition of evergreen and deciduous PFTs for comparison to
CMIP5 model output by adding the fractional abundance of the mean posterior estimate for all taxa within
each PFT at the 8 km grid cell resolution (Table 1). This ESV data set represents the percent forest composition
and does not indicate the fraction of nonarboreal vegetation present. The ESV data were then reprojected
and aggregated to a regular 0.5° latitude-longitude grid through bilinear interpolation using Earth System
Modeling Framework software through the National Center for Atmospheric Research Command
Language. We investigated the impact of regridding spatial resolution choice by conducting alternate ana-
lyses at 2.25°, 3.25°, and 4.25° resolutions and found that the choice of larger spatial resolutions did not
impact the conclusions of this analysis (supporting information Figure S1).

Output for all CMIP5 models that contributed the variable PFT grid fraction (landCoverFrac) from the prein-
dustrial control experiment (piControl) was obtained from the Earth System Grid (Table 2). piControl pre-
scribed preindustrial CO2 concentrations and did not include any prescribed vegetation state and is used
to characterize carbon cycling just prior to 1850. As such, piControl output should closely approximate the
ESV data set, which represents the state of the landscape just prior to major land use conversions
during settlement.

To facilitate the comparison of PFT distributions among ESMs, which vary in their functional resolution, we
aggregated all evergreen PFTs (e.g., boreal evergreen trees and temperate evergreen trees) and all deciduous
PFTs within each ESM to single evergreen and deciduous PFT classes, excluding nonforest cover. Savanna
and prairie comprise a small proportion of the 8 × 8 km ESV data set in the west along the prairie-forest mar-
gin of Wisconsin, Minnesota, and Illinois. At a 0.5° resolution this proportion falls even farther. CMIP5 models
varied in their native spatial resolution (Table 2), so prior to our regional comparative analysis all models were
resampled at a uniform 0.5° resolution using bilinear interpolation and clipped to the spatial extent of the ESV
data set. CMIP5 models were left in their original resolution for within-model global PFT-climate analyses
described below in section 2.3.

We compared the spatial pattern and magnitude of the CMIP5 model output to the ESV data set using Taylor
plots [Taylor, 2001], which describe the correspondence between data and models by simultaneously
summarizing the correlation, centered root-mean-square error, and standard deviation between two spatial
variables. We included these statistics for only the fraction of deciduous trees in the domain, since the figure
is nearly identical for evergreen trees due to the constraint that the evergreen and deciduous fractions sum
to one.

2.2. Climatology for ESV and CMIP5 PFTs

We compared the simulated and observed relationships between PFT distributions and climate by examining
ESV-based PFT distributions in the climate space of the CRUNCEP 0.5° climate data product, version 4 [Mitchell
and Jones, 2005;Wei et al., 2014], and the distribution of the CMIP5 PFTs within the climate space of each ESM.

Table 2. CMIP5 Model Lista

Model Name
Native Model Resolution

(Latitude × Longitude; deg)
Albedo

(rsds/rsus)
Net Primary

Productivity (npp)
Transpiration

(tran)

ACCESS1-0 1.25 × 1.875 Yes No No
ACCESS1-3 1.25 × 1.875 Yes No No
HadGEM2-CC 1.25 × 1.875 Yes Yes No
HadGEM2-ES 1.25 × 1.875 Yes Yes No
IPSL-CM5A-LR 1.8947 × 3.75 Yes Yes Yes
IPSL-CM5A-MR 1.2676 × 2.5 Yes Yes Yes
IPSL-CM5B-LR 1.8947 × 3.75 Yes Yes Yes
MIROC-ESM-CHEM 2.7673 × 2.8125 Yes Yes Yes
MIROC-ESM 2.7673 × 2.8125 Yes Yes Yes
MPI-ESM-LR 1.8496 × 1.875 Yes Yes Yes
MPI-ESM-MR 1.8496 × 1.875 Yes Yes Yes
MPI-ESM-P 1.8496 × 1.875 Yes Yes Yes

aList of CMIP5 models used here, their native resolution in degrees, and whether they contributed output for albedo
(where rsds is downwelling short-wave radiation and rsus is upwelling shortwave radiation), net primary productivity
(npp), and transpiration (tran).
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For CMIP5 climate variables, we downloaded output for monthly mean land surface temperature at 2m
above the Earth’s surface and monthly mean precipitation flux for all models that also reported PFT grid frac-
tion for the piControl experiment. We aggregated monthly mean model output to annual mean temperature
(MAT; °C) and mean total annual precipitation (MAP; mm/yr) using the first 30 years of simulation to derive a
30 year climatology. We similarly aggregated monthly mean temperature and precipitation from the
CRUNCEP data product into a 30 year mean annual climatology of MAT and MAP for years 1901–1930.
Although the CRUNCEP product does not precisely align with the time period of the ESV data set, we used
it because it is the temporally nearest observational gridded data product currently available. We regridded
CMIP5 climate variables from their native resolution (~1.5–3° grid) to the uniform 0.5° CRUNCEP grid and
clipped the output to the study region to facilitate spatial comparisons between models. We calculated
the correspondence between CMIP5 modeled climatology and the CRUNCEP climatology through simple lin-
ear regression in R (supporting information Figure S2 and Table S1).

To examine similarity in PFT-climate relationships between the ESV data and the CMIP5model output, we cal-
culated the climate niche overlap between the ESV and CMIP5 PFT distributions as the Hellinger distance
based on MAT and MAP [Warren et al., 2008]. The Hellinger distance is calculated as the squared difference
between two probability distributions (i.e., the f divergence) [van der Vaart, 1998] and is used in biogeogra-
phical studies to assess niche overlaps among populations and species [Warren et al., 2008; Evans et al., 2009;
Heibl and Calenge, 2013]. To determine whether climate niche overlap between PFTs in the ESV and CMIP5
piControl models differed significantly from random, we took 5000 random samples with replacement, from
the ESV and CMIP5 PFT data in the MAT-MAP climate space. With each pseudo data set, we calculated the
Hellinger distance metric for the niche overlap between the ESV data and the CMIP5 models, to estimate
the mean distance (with a 95% interval) representing a random relationship generated from the data. We
used these pseudodata to evaluate the difference between the actual ESV-CMIP5 PFT niche overlaps and
the expected amount of niche overlap given a random spatial redistribution of the data.

2.3. Bias Calculation for CMIP5 PFT Distribution Errors

To quantify the bias in vegetation-atmosphere fluxes caused by inaccurate PFT distributions within the CMIP5
models, we evaluated modeled albedo (calculated as the ratio between upwelling (rsus) and downwelling
(rsds) short-wave radiation; unitless), net primary productivity (NPP; kg Cm�2 yr�1), and transpiration (tran;
mmyr�1) from models that also contributed output for PFT fraction in the piControl experiment. We aggre-
gated monthly mean albedo into an annual mean and monthly NPP and transpiration into 30 year averages
of the annual sums averaged across the first 30 model years. Modeled albedo was available and calculated for
all CMIP5models analyzed here, but NPP output was only available for 10 of 12models, and transpiration out-
put was only available for 8 of 12 models (Table 2).

To estimate the impact of incorrect PFT distributions within individual ESMs, we evaluated the bias in the
vegetation-atmosphere feedback variables albedo, NPP, and transpiration by analyzing the within-model
relationships between climate and vegetation-atmosphere flux for each PFT. To assess these relationships,
we identified ESM grid cells from the global simulations whose composition was more than 85% either ever-
green or deciduous PFT cover, then calculated model-specific relationships among MAT, MAP, and albedo,
NPP, or transpiration by fitting an Akima spline [Akima, 1970; Gebhardt et al., 2013]. Using each model’s out-
put for MAT and MAP, we then calculated the values of albedo, NPP, or transpiration that ought to have been
modeled by using the ESV data to represent the actual PFT composition of the landscape. We calculated
biases in albedo, NPP, and transpiration as the difference between the modeled ESM ecosystem-atmosphere
flux variable for each grid cell and the “actual” calculated variable as a linear mixture of the actual PFTs from
the ESV data set and their spline-fitted values of albedo, NPP, or transpiration. This method evaluated the
direct within-model costs for inaccurately mapping evergreen and deciduous trees but did not evaluate sec-
ondary feedbacks between altered ecosystem-atmosphere feedbacks and MAT/MAP.

To examine the relationships amongmodeled PFT distributions, climate, and vegetation-atmosphere flux, we
calculated the within-model elasticity (evar1-var2) for variable pairs. A variable pair with high elasticity indicates
that the response (var2) responds strongly to variability in the predictor (var1). We calculated evar1-var2 for
within-model variable pairs by relating var1 to var2 using a natural cubic spline (gvar2(var1)), calculating sen-
sitivity as the derivative of the spline at themedian of var1 (dgvar2/d(var1)) and standardizing the sensitivity by
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mean of var1 and var2,
dgvar2
d var1ð Þ

var2 =var1ð Þ [LeBauer et al., 2013]. Because evar1-var2 is normalized by the predictor and

response means, the magnitude is comparable across variables of different units. We calculated within-model
elasticity of (1) PFT fraction to climate variables (eMAT/MAP-PFT), (2) vegetation-atmosphere flux to climate
(eMAT/MAP-albedo/NPP/tran), and (3) vegetation-atmosphere flux to PFT fraction (ePFT-albedo/NPP/tran). Through this
set of relationships, we assessed the relative importance of the mechanisms that link PFT fraction, climate,
and vegetation-atmosphere flux within individual ESMs. The R code used for the entire analysis within this
paper is available at http://github.com/jhmatthes/CMIP5_ESV_historicalPFTs/ and used several R packages for
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Figure 2. Taylor plot summarizing the correspondence between ESV settlement vegetation data set and simulated PFT dis-
tributions from the CMIP5 piControl experiment. Black symbols represent individual CMIP5model simulations of deciduous
PFT fraction; green square represents the ESV data set. The correlation between each CMIP5 simulation and ESV data is
indicated by the radial branches (black numbers), with most models having moderately positive correlations (0.2 to 0.6) to
the data and two with slightly negative (�0.2) correlations. Spatial heterogeneity in mapped PFTs is indicated by distance
from the circle origin (blue numbers), with the ESV data set having a standard deviation of 0.22 and most simulations
having similar or reduced spatial heterogeneity. In this visualization, smaller straight-line distances between model points
and the green square (green numbers) indicate closer correspondence betweenmodeled PFT fraction and the ESV data set.

Table 3. Summary of Data-Model Comparisonsa

Model Evgrn Niche Corr Decid Niche Ccorr MAT Diff (°C) MAP Diff (mm/yr) Albedo Bias (%) NPP Bias (%) Transpir Bias (%)

ACCESS1.0 0.67 0.72 1.30 197 11.9 - -
ACCESS1.3 0.49 0.63 2.76 274 �0.02 - -
HadGEM2-CC 0.76 0.83 �0.35 111 12.2 �8.0 -
HadGEM2-ES 0.76 0.85 0.89 125 25.2 �1.3 -
IPSL-CM5A-LR 0.71 0.71 -1.35 168 5.3 25.8 35.2
IPSL-CM5A-MR 0.75 0.83 0.23 182 2.1 14.5 27.8
IPSL-CM5B-LR 0.62 0.60 �2.33 184 2.1 20.6 17.0
MIROC-ESM-CHEM 0.19 0.63 3.50 100 �0.6 �12.4 0.2
MIROC-ESM 0.18 0.66 3.24 103 3.7 �8.4 �0.05
MPI-ESM-LR 0.64 0.61 �1.07 262 0.9 2.0 1.9
MPI-ESM-MR 0.68 0.58 �0.68 309 2.8 4.3 1.0
MPI-ESM-P 0.76 0.61 �0.54 251 3.9 8.2 7.6

aNiche corr indicates the Hellinger index of niche overlap between observed and simulated evergreen (Evgrn) and deciduous (Decid) PFTs. MAT and MAP diff
indicates the difference between CRUNCEP climatology and CMIP5modeled climatology. The last three columns indicate the percent biases in albedo, net primary
productivity (NPP), and transpiration (Transpir) for some of the CMIP5 models. Boldface indicates significantly different from random for the niche correlation test,
and a mean difference greater than 2 standard deviations from zero for climate differences and flux biases. See supporting information Table S2 for the full dis-
tribution statistics and absolute magnitudes of modeled biases.
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plotting and data manipulation that
are described within the code
[Furrer and Gerber, 2014; Soetaert,
2014; Becker et al., 2015; Bivand
et al., 2015; Hijmans et al., 2015;
Nychka et al., 2015; Pebesma et al.,
2015; Pierce, 2015; Plate and
Heiberger, 2015].

3. Results
3.1. ESV and CMIP5 PFT
Spatial Comparison

Models varied widely in their ability
to accurately capture the spatial
pattern of PFTs in the ESV data set
(Figure 2). Some of the discrepancy
between ESV and CMIP5 PFTs can
be attributed to the higher native
resolution of the ESV data set and
its finer-scale detail in capturing
actual PFT distributions, which per-
sists even after spatial aggregation
to 0.5°. Data-model discrepancies
persist and are similar in magni-
tude at coarser spatial resolutions
(supporting information Figure
S1). Data-model discrepancies can-
not solely be attributed to issues of
spatial resolution, and two models
were anticorrelated with the spa-
tial patterns in the ESV data
(Figure 2). While simulations varied
widely in their ability to capture
underlying PFT distributions, the
standard deviations of PFT abun-
dance closely matched that of the
ESV data, with a standard deviation
in regional PFT distribution of
approximately 0.24. However, the
spatial correlation and centered
root-mean-square difference var-
ied more broadly across models
(Figure 2). This indicates that, in

general, the ESMs accurately represented the variability in PFT fraction across the region but often failed to
accurately map the spatial locations of PFTs.

3.2. ESV and CMIP5 PFT-Climate Relationships

We examined the relationship between PFT abundance and MAT and MAP for both the ESV data set and the
CMIP5 models to determine whether the data-model discrepancies were the result of (1) differences in modeled
climates or (2) inaccuracies in model PFT-climate relationships. Diagnostic analyses indicated that these data-
model discrepancies are due to inaccuracies in both the simulated climates and the model PFT-climate relation-
ships. Many of themodeled CMIP5 climates varied significantly from the CRUNCEP-observed (1901–1930) climate;
6 of the 12 CMIP5 models had significant differences in regional MAT, and 5 of 12 models had significant
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Figure 3. Hellinger distance niche overlap. The Hellinger distance measures
the pairwise overlap between taxonomic distributions when plotted in cli-
mate space, with 1 indicating perfect overlap and 0 indicating no overlap.
Here niche overlap between the ESV data set and CMIP5 models is assessed
for (a) evergreen and (b) deciduous PFTs in a bivariate climate space repre-
sented by mean annual temperature and mean total annual precipitation,
where grey dots and bars indicate the bootstrapped mean and 95% confi-
dence interval for the randomized data set, and crosses indicate the actual
niche overlap. For deciduous PFTs, niche overlap was consistently better
than random, indicating skillful predictive ability by CMIP5 simulations. For
the evergreen PFT, five models achieved better than random predictive skill,
five were indistinguishable from random, and two models had significantly
worse than random overlap.
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differences in regional MAP (sup-
porting information Figure S2).
Differences between CMIP5 models
and CRUNCEP regional MAT ranged
from �2.33°C to 3.5°C, and all
CMIP5 models had higher regional
MAP than the CRUNCEP data pro-
duct by 100–300mmyr�1 across
the study region (Table 3).

Observed and modeled PFT-climate
relationships also differed signifi-
cantly. Across all CMIP5 models,
correspondence between the ESV-
CRUNCEP climate niches and the
CMIP5 modeled climate niches
were generally higher for the decid-
uous PFT than the evergreen PFT
(Figure 3). This is due to the broader
climate space and more diverse set
of taxa covered by the deciduous
PFT within this region during the
study period, compared with the
more constrained climate space
and smaller set taxawithin the ever-
green PFT, thus constituting a more
rigorous target tomatch. Deciduous
PFT niche overlap between the ESV
and all CMIP5 piControl models was
significantly better than random
(Figure 3). Niche overlap between
the ESV and all CMIP5 piControl
models for the evergreen PFT was
better than random for five models,
indistinguishable from random for
five models, and worse than ran-
dom for two models. Average niche
overlap (i.e., the Hellinger distance)
across all models with the ESV data
set in CRUNCEP climate space was
0.60 for the evergreen PFT and
0.69 for the deciduous PFT.

3.3. Bias in
Ecosystem-Atmosphere
Feedback Variables

CMIP5 PFT distribution errors for
evergreen and deciduous PFTs did
not always produce significant direc-
tional biases in land-atmosphere
feedback variables at the regional

scale (Figure 4). Local biases, where individual cells showed large predictive errors, tended to be compensated
elsewhere in the study region. This resulted in high regional variability but reduced regional-scale systematic bias.
Mean regional albedo bias ranged from �0.6 to 25.2% across models, but 3 of the 12 models had a significant
positive regional albedo bias (Table 3 and Figure 4a). The mean absolute albedo bias (�0.01–0.04) was similar
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c) Transpiration

Figure 4. Biases in vegetation-atmosphere flux due to errors in PFT distribu-
tions. The percent grid cell bias in albedo, net primary productivity, and
transpiration due to inaccurately simulated PFT distributions are plotted here
for the spatial domain of the ESV data set. Box-and-whisker plots indicate 5%,
95%, 25%, and 75%, and the median of the distributions across all modeled
grid cells and outliers that extend beyond the 95% range are indicated as
dots. Most models had locally compensating errors in regional vegetation-
atmosphere feedbacks, where the mean regional bias was not significantly
different from zero. Models are absent from bias plots if output variables
were not available in the Earth System Grid.
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to the range of global bias calculated by an analysis of Max-Planck-Institut (MPI)-ESM against a contemporary
Moderate Resolution Imaging Spectroradiometer satellite albedo data set [Brovkin et al., 2013].

Regional mean bias in NPP across the 10 CMIP5 models with reported NPP ranged from �12.4 to 25.8%,
where 5 CMIP5 models significantly differed from 0 (Table 3 and Figure 4b). The three Institut Pierre-Simon
Laplace (IPSL) models systematically overestimated NPP by 14.5 to 25.8% across the domain as a conse-
quence of spatial incongruities between the evergreen and deciduous PFTs relative to ESV distributions, with
lower predicted evergreen proportions resulting in higher deciduous PFT proportions, which have higher net
NPP contributions within the models relative to the evergreen PFT.

The bias in regional NPP across models triggered a concomitant bias in transpiration from �0.05 to 35.2%
across the CMIP5 models, where three of the eight CMIP5 models that contributed transpiration output
had positive regional biases that were significantly different from zero (Table 2 and Figure 4c). The five mod-
els with significant transpiration biases also had significant positive biases in NPP as a result of mapping dif-
ferences between the ESV and CMIP5 PFTs due to the mechanistic coupling between plant productivity
and evapotranspiration.

3.4. Elasticity Between CMIP5 PFT, Climate, and Ecosystem-Atmosphere Flux Variables

Themodeled variable pairs with the largest elasticity varied across ESMs in this study. For the ACCESS, Hadley,
and MIROC models, e was highest for the response of PFT fraction to climate, where eMAP-PFT was largest in
ACCESS and Hadley models (1.36–1.83), and eMAT-PFT was largest in the MIROC models (1.04 and 1.31;
Table 4). However, models that had lower elasticity between climate variables and PFT fraction more accu-
rately simulated PFT fractions, with the exception of the ACCESS1-3 model (Figure 2). This could indicate that
the ACCESS1-0, Hadley, and MIROC models had errors in PFT fraction primarily because these models simu-
lated relationships that were particularly sensitive to regional climate variability.

Vegetation-atmosphere fluxes were not especially sensitive to MAT (median eMAT-flux = 0.52) with the excep-
tion of models that also had high elasticity for climate-PFT relationships, where eMAT-NPP was 1.09 and 1.45 in
the Hadley models and eMAT-flux for all vegetation-atmosphere flux variables in the MIROCmodels were 1.06–
1.31 (Table 4). Within the majority of ESMs, vegetation-atmosphere fluxes were more sensitive to MAP (med-
ian eMAP-flux = 0.87) with notably high eMAP-flux among the MPI models (0.69–2.30; Table 4). In general, across
all models albedo had low elasticity to PFT fraction but was highly variable (ePFT-albedo = 0.07–1.08); NPP and
transpiration were more elastic in response to PFT fraction among ESMs (ePFT-NPP = 0.93–1.47 and ePFT-
tran = 0.73–1.43), with the exception of the MPI-P model (ePFT-NPP = 0.19 and ePFT-tran = 0.24; Table 4). Within
the IPSL models, the elasticity of NPP and transpiration to PFT fraction was the highest among the tested vari-
able pairs (median ePFT-NPP/tran = 1.12).

Table 4. Summary of the Elasticity (evar1-var2) of Response Variables (var2) to Predictor Variables (var1) Within Individual CMIP5 Models for Relationships Between
Mean Annual Temperature (MAT), Mean Annual Precipitation (MAP), Plant Functional Type Fraction (PFT), Albedo (alb), Net Primary Productivity (npp), and
Transpiration (tran)

Model MAT-PFT MAP-PFT MAT-alb MAT-npp MAT-tran MAP-alb MAP-npp MAP-tran PFT-alb PFT-npp PFT-tran

ACCESS1-0 1.39b 1.83c 0.68a 0.82a 0.43a

ACCESS1-3 1.16b 1.36b 0.79a 0.93a 0.08a

HadGEM2-CC 1.11b 1.77c 0.32a 1.09b 0.51a 1.65c 0.30a 1.18b

HadGEM2-ES 1.49b 1.74c 0.38a 1.49b 0.27a 1.62c 0.27a 1.30b

IPSL-CM5A-LR 0.28a 0.26a 0.16a 0.32a 0.35a 0.13a 0.42a 0.49a 0.63a 1.11b 1.43b

IPSL-CM5A-MR 0.42a 0.53a 0.27a 0.42a 0.45a 0.32a 0.51a 0.55a 0.43a 1.26b 0.73a

IPSL-CM5B-LR 0.26a 0.34a 0.19a 0.28a 0.27a 0.24a 0.36a 0.33a 0.79a 1.11b 1.13b

MIROC-ESM-CHEM 1.31b 0.91a 1.15b 1.31b 1.26b 0.81a 0.91a 0.88a 0.88a 1.00b 0.97a

MIROC-ESM 1.04b 0.83a 1.12b 1.11b 1.06b 0.90a 0.88a 0.86a 1.08b 1.07b 1.03b

MPI-ESM-LR 0.26a 0.63a 0.22a 0.51a 0.62a 0.69a 1.59c 1.92c 0.07a 0.93a 0.78a

MPI-ESM-MR 0.06a 0.41a 0.27a 0.53a 0.65a 1.07b 1.84c 2.30d 0.17a 1.47b 1.18b

MPI-ESM-P 1.35b 4.81d 0.43a 0.58a 0.82a 1.46b 1.38b 1.95c 0.09a 0.19a 0.24a

aevar1-var2< 1.0.
bevar1-var2< 1.5.
c1.5< evar1-var2< 2.0.
devar1-var2> 2.0.
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4. Discussion
4.1. Accuracy of Historical PFT Mapping in CMIP5 Models

CMIP5 models varied widely in their ability to capture historical regional Euro-American settlement patterns of
evergreen and deciduous PFTs (Figure 2), due to differences in modeled climate, PFT-climate relationships, and
in internal elasticities related to connections among climate, PFT distributions, and vegetation-atmosphere flux.
The ESV data set for the Northeastern United States [Paciorek et al., 2016] provides a regional-scale benchmark
at a critical time period, which acts as the baseline before the start of the industrial era in the CMIP experiments,
binding data from the Upper Midwest [Goring et al., 2015] through the East Coast of the United States [Cogbill
et al., 2003; Thompson et al., 2013] before European settlers initiated major land use changes. Local-scale variance
in the ESV is partly the result of the higher spatial resolution and resampling process and also because historical
contingency plays a role in vegetation structure on the landscape [Jackson et al., 2009]. Differences between PFT
distributions within the ESV data set and CMIP5 models could support the need for incorporating more nuanced
environmental drivers into potential vegetation calculations including subgrid heterogeneity in topography, soils,
and hydrology, as well as historical information about ecological disturbances like forest pests and pathogens,
fires, and storm damage [Schulte et al., 2005] and the fact that high-level PFTs are not always natural ecological
groupings. Environmental constraints and ecological disturbances prevent ecosystems from attaining their
modeled potential vegetation states or provide multiple “potential states.” Thus, refining the representation of
ecological disturbances with additional historical data sets capturing past disturbance processes [e.g., Marlon
et al., 2013] has the potential to mechanistically improve the correspondence between actual and modeled
historical vegetation distributions resulting in a more accurate representation of land-climate feedbacks [Han
et al., 2012], while refined ecological groupings can further improve taxon-climate relationships and generate a
broader ecological palette with which to map potential vegetation. Additional working groups within the
PalEON project (http://paleonproject.org) are currently synthesizing data sets describing the role of historical
ecological disturbances in shaping historical vegetation patterns in this region at spatial scales that are relevant
for Earth system models.

4.2. Relationships Among PFT Fraction, Climate, and Vegetation-Atmosphere Flux

This analysis also highlighted significant room for improvement in the current representation of modeled
PFT-climate relationships by CMIP5 models. Models varied in their ability to capture PFT-climate niche rela-
tionships across this region, particularly for evergreen trees that are more narrowly constrained in both cli-
mate space and taxonomic diversity within this region (Figure 3 and Table 1). Furthermore, ESMs varied
widely in their elasticity between modeled PFT fraction and modeled climate (0.06–1.49 for eMAT-PFT; 0.26–
4.81 for eMAP-PFT; Table 4), suggesting a lack of consensus among models regarding the sensitivity of PFT dis-
tributions to climate variability. The disparity among these relationships reflects a potential area for future
model-data benchmarking to examine constraints between modeled climate and PFT fraction, particularly
as more models develop the capacity to simulate the dynamic response of vegetation to climate.

Most efforts to parameterize PFT distributions in ESMs have focused on contemporary distributions of leaf
traits in climate space from field data typically collected over the past 10–20 years that are based on
broad-scale physiological constraints [Harrison et al., 2010]. These now provide a rich data set for understand-
ing the current biogeography of plant traits (GLOPNET [Wright et al., 2004] and TRY [Kattge et al., 2011]).
However, assimilation of these global PFT traits into ESMs is still at the early stages [Bonan et al., 2012],
and improving the mechanistic relationships between PFTs and climate, through both trait data set analysis
and model simulation, remains an area of developing research [McMahon et al., 2011; Fisher et al., 2015]. The
analysis within this paper highlights the potential for building upon trait-based PFT-climate analyses col-
lected at one point in time to incorporating historical data that can further refine our understanding of
PFT-climate relationships through time, at the early stages of the Anthropocene. The ESV data set presented
here is part of a larger historical data set. The Public Land Survey covers most of the contiguous United States;
thus, efforts to use this data to improve models will rely on greater interaction between modelers and histor-
ical and paleoecologists who work directly with the data to understand not only the nature of the historical
data but the implications of shifts between historical andmodern forest composition and structure, including
(but not limited to) the widespread loss of forest types in the Upper Midwest and the advent of novel forest
types, previously unknown in the region [Goring et al., 2015].
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Although historical data sets are commonly perceived to be more coarsely resolved than contemporary data
sets, the ESV data set [Goring et al., 2015; Paciorek et al., 2016] offers a remarkable benchmark data set. It
achieves an 8 km spatial resolution and genus-level taxonomic resolution, which is higher than the resolution
of the models studied here. In addition to the ESV PFT fraction used in this analysis, PalEON researchers are
working to produce statistical estimates of biomass and stem density for the same regional domain.
Synthesis of other historical data sets similar to the ESV data (Sweden [Östlund et al., 1997], Congo [Brncic
et al., 2007], and central Europe [Bürgi and Gimmi, 2007]) could also be used in future analyses to further test
historical PFT mapping within ESMs. These high-quality data sets provide a rigorous test for ESMs to capture
regional patterns in historical vegetation states, which can help to constrain centennial-scale ecosystem-
climate feedbacks.

4.3. Biases in Vegetation-Atmosphere Flux From PFT Mapping Errors

Biases in land-atmosphere exchange can initiate important global changes through teleconnections within
global circulation models [Swann et al., 2014] or the creation of initialization biases that persist through
21st century simulations and improving the accuracy of historical PFT distributions within CMIP5 models
has the potential to improve vegetation-atmosphere feedback differences created by discrepancies in
mapped PFTs (Figure 4). Local differences in albedo, NPP, and transpiration within individual grid cells can
play an important role for downscaling large-scale ESM output to regional climate scenarios [Hawkins and
Sutton, 2009] and deducing impacts of historical climate on local ecological processes [Harris et al., 2014].
For some CMIP5 models, these local-scale discrepancies scaled up to systematic regional biases in
ecosystem-climate feedback variables (Figure 4). These within-model biases did not always correlate with
models that had the highest error in mapping PFTs (Figure 2).

Within the ESMs, NPP and transpiration had much more elastic relationships with climate and PFT fraction
(median ePFT/MAT/MAP-NPP/tran = 0.95) than albedo did (median ePFT/MAT/MAP-albedo = 0.43; Table 4). This sup-
ports recent findings that indicate that not all model-data mismatch in the historical record propagates into
future climate sensitivities at a global scale [Schmidt et al., 2014]. However, for some ESMs, modeled NPP and
transpiration were much more elastic in response to modeled PFT fraction, propagating into systematic
regional biases in vegetation-atmosphere flux as a result of this within-model sensitivity. For example, while
the IPSL models were among the most skillful at simulating PFTs (Figure 2), modeled NPP and transpiration
had a relatively high elasticity with PFT fraction within this suite of models, whereas all other relationships
among PFT distributions, climate, and vegetation-atmosphere flux were less elastic (Table 4). Thus, the biases
in modeled NPP and transpiration for the IPSL suite responded with much more sensitivity to these small
data-model differences in PFT distribution (Figure 4), due to the lack of elasticity among other drivers within
this region (Table 4). This highlights the importance of considering the complex within-model connections
and relative elasticity among modeled PFT fractions, climate, and vegetation-atmosphere flux.

Biases in NPP caused by inaccurate PFT distributions were of similar magnitude to several phenomena examined
by Anav et al., 2013: (1) differences in annual NPP between CMIP5 models, (2) a global atmospheric inversion for
the Northern Hemisphere seasonal pattern in net biome productivity from 1986 to 2005, and (3) the seasonal
pattern in gross primary productivity compared with the global FLUXNET database of eddy covariance measure-
ments. In Anav et al., 2013, differences between CMIP5 modeled carbon fluxes and the data sets were attributed
to differences in the representation of nutrient limitations and ozone impacts on vegetation. However, discrepan-
cies in mapping PFTs through space likely also contribute to these errors, because the proportion of deciduous
versus evergreen trees on the landscape exerts a first-order control on the seasonal pattern of carbon flux
[Bonan, 2008]. Since plant productivity and evapotranspiration fluxes are mechanistically coupled, we would
expect that the transpiration fluxes would exhibit a similar range of biases in comparison with the plant produc-
tivity fluxes, but large differences in reference data sets formodern evapotranspiration have presented challenges
for systematically assessing differences among CMIP5 models [Schwalm et al., 2013].

5. Conclusions

These results indicate that model differences in internal relationships between climate, PFT distributions, and
physiological variables are a primary cause of data-model discrepancies. Understanding and constraining the
actual elasticity between PFT-climate relationships and emergent land-climate feedback variables is an area
of critical need and promising future research both for modelers, field scientists, and paleohistorical scientists.
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Historical data sets in particular offer a relatively underutilized opportunity for gainingmechanistic insights into
the processes governing vegetation distributions and vegetation-climate feedbacks. Challenging ESMs with
historical data sets that can benchmark land-climate feedbacks through timewill play an important role in iden-
tifying and characterizing mechanistic improvements within ESMs. Better understanding of ecological interac-
tions between PFTs and climate will be particularly important for improving the representation of decadal to
centennial feedbacks between ecosystems and climate.
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