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Introduction
Assessing the feasibility of developing a strong biofuel industry around biomass feedstock requires a 
comprehensive evaluation of agronomic, environmental, social and economic factors. An encompassing 
assessment of the sustainability of biomass production as a feedstock for a developing bioenergy sector 
is complex due to the multiple dimensions involved in a complete evaluation of its social, technological 
and economic factors. The current trend of rising fossil fuel prices and observed climate change, 
and other adverse environmental and societal impacts of energy use make the exploration for more 
sustainable ways to use energy more important than ever (Kowalski et-al., 2009). According to Hill et-al. 
(2006) for biofuels derived from crops to be a viable alternative they should:

	 •	provide a net energy gain,
	 •	have environmental benefits,
	 •	be economically competitive,
	 •	be producible in large quantities and 
	 •	do not reduce food supplies.

Incorporating these multiple objectives into a single framework is challenging and requires tools and 
strategies to support decisions of stakeholders and policymakers. A fundamental component of such 
comprehensive assessments is the evaluation of the potential and attainable productivity of biofuel 
crops in different locations and growing conditions. Acquiring this type of information through field 
experimentation in herbaceous and woody crops, as well as in native forests and grasslands, is both 
expensive and time consuming, as it can take years of field trials to provide accurate estimates of 
potential production. An alternative science-based approach to estimate bioenergy crops productivity 
is to use biophysical or empirical simulation models. These models can provide estimates of average 
productivity and its inter-annual variability based on soil, weather, and bioenergy crops management 
databases that serve as inputs to the model. 

To some extent the future of biofuels depends on technological breakthroughs which are difficult to 
predict, as technological advances might give an edge to particular renewable energy alternatives. 
Nonetheless, the current understanding is that transportation will continue to rely on liquid fuels in 
the coming decades and that a fraction of the liquid fuel supply will be based on oil, starch, and in 
particular ligno-cellulosic crops (Richard, 2010). Establishing a large scale biofuel industry requires a 
careful assessment of resources, logistic capabilities, and potential bottlenecks in the production chain 
before large investments are deployed in the field. Crops might play an important role supplying the 
feedstock for this demand of transportation fuels. Some of the more pressing questions are: Which crops 
to grow, where, and how to grow them? Also, what are the local and global consequences of growing 
crops for biofuel? 



320  Sustainable Alternative Fuel Feedstock Opportunities, Challenges and Roadmaps for Six U.S. Regions

Approaching these questions can benefit greatly from modeling tools such as databases, computer 
simulation models and novel statistical approaches to integrate data and model inputs and outputs. 
Historically, crop research has focused on increasing seed yields of cereal and oilseed crops and much 
less attention has been given to improving yields of crops for total biomass. Recent interest in biomass 
crops has spurred research in developing annual grasses (e.g. sorghum), perennial rhizomatous grasses 
(e.g. switchgrass, Miscanthus, sugarcane, Spartina) and woody (e.g.willow, poplar) feedstocks that can 
be converted to liquid fuels using cellulose as the main substrate (Perlack et-al., 2005). In this chapter 
we will briefly review some of the candidate feedstocks for which our modeling efforts are relevant, 
describe data requirements (databases), biophysical models, and statistical tools to connect data and 
models and assess model performance.

Food-Based Biofuels
Currently, food crops are the main source of feedstock for biofuel. Grain maize is the main source of 
ethanol used mostly as an additive to conventional gasoline. However, it has been criticized mainly for 
competing with food production and having a low conversion efficiency to ethanol. This low conversion 
efficiency is in part a result of the large amounts of nitrogen (N) fertilizer needed to achieve high yields 
(Shapouri et al. 2002). Soybean oil is used for the production of biodiesel which seems to have a more 
favorable conversion efficiency and emissions reduction than ethanol production from maize grain 
(Hill et al., 2006). In addition to being food crops and having relatively low conversion efficiencies, the 
conversion of all U.S. maize grain and soybean oil into biofuels would only contribute to 12% and 6% of 
the U.S. gasoline and diesel demands, respectively, having even in that extreme case a low impact in the 
development of a significant alternative renewable energy (Hill et al., 2006).

Perennial Grasses
Perennial rhizomatous grasses have been put forward as dedicated biomass crops because of their many 
benefits which include high productivity, high water and nutrient use efficiency, nutrient recycling, long 
canopy duration and reduced agronomic inputs (e.g. fertilization and tillage) (Heaton et al., 2004b). 
These characteristics make them more suited for sustainable production of biomass than traditional 
crops grown for food production. Some of the species with great potential as biomass producers 
are: switchgrass (Panicum virgatum), Miscanthus × giganteus, and energycane (sugarcane bred for 
biomass production) (Somerville et al., 2010). Sugarcane is currently successfully used in Brazil for the 
production of ethanol (Nass et al., 2007) but there are concerns about its sustainability and the impact on 
deforestation of the Amazon and the Cerrado regions (Sawyer, 2008).

Woody Biomass
Worldwide 75% of current biofuel use is derived from wood and wood by-products (Food and 
Agriculture Organization (FAO), 2007). In many ways woody biomass is the oldest biofuel, having been 
burned directly or converted to charcoal for millennia. In more industrialized settings woody biomass 
is also utilized as a solid fuel for both on-site energy generation using from industrial waste (e.g. at 
sawmills and pulp plants) and in larger scale “cogeneration” electrical plants that use a mix of wood 
and fossil fuels.
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The use of wood as a liquid biofuel feedstock is currently limited, yet wood has advantages as feedstock 
for cellulosic ethanol production due to its higher density than grass crops which can lead to greater 
transportation efficiency. Woody biofuels are also less sensitive to harvest time, potentially allowing 
a more stable fuel production that would buffer both the annual cycle of crop harvests and the inter-
annual variability in crop yields. Worldwide there are large areas of marginal agricultural land that has 
been abandoned and allowed to regrow as forest. There are also large afforested areas where markets 
may favor liquid fuel production. Existing native and plantation forests could both be harvested directly 
for biofuel production and either regrown under their current land-use or converted to short-rotation 
coppice forestry. Coppice forestry is based on frequent harvesting and rapid regeneration by stump 
re-sprouting. Most research has focused on hybrid varieties of poplar (Populus) and willow (Salix) that 
have been selected for rapid regeneration. A survey of the scientific literature across all climates and 
clones suggests that poplar and willow can deliver mean annual yields in the range of 7.5 and 8.9 Mg 
ha−1 respectively with maximum reported annual yields of 40 and 38 Mg ha−1 respectively (Wang and 
Dietze unpublished data).

Biophysical Models
Computer simulation models play a critical role in the evaluation of potential biofuel crops. Unlike 
first generation biofuel crops, such as maize and soybean, which have been planted over large areas for 
many decades, most second generation crops have only been evaluated in a handful of field trials and 
in a comparatively short time span. This leads to a number of questions about how different crops will 
yield in different areas and what the long-term impacts on ecosystem services will be that can only be 
answered through the use of models.

Process-based simulation models are a cost-effective tool to assess the productivity and environmental 
benefit or impact of biofuel, forage, grain, and other mixed production systems. The successful 
application of these models requires a correct parameterization of crop, soil, and landscape properties, 
as well as a well defined initialization procedure. The quantification of the uncertainties associated 
with model-based extrapolation can be complex, and requires careful attention and interpretation. 
Models vary in the detail with which crop, soil and landscape-scale processes are treated and in the 
fundamental principles driving mass and energy flux in the system. These differences are briefly 
discussed for biomass accretion and nutrient cycling in the soil.

Biomass Accretion
There are two approaches used to simulate crop processes in cropping and ecosystem simulation 
models. Some modeling systems use a generic vegetation model (e.g. APEX-EPIC, C-Farm, CropSyst, 
DayCent, Ecosys, WIMOVAC), while others use a species-based model (e.g. APSIM, DSSAT). In the 
former a common framework is used to simulate all processes and different species or cultivars are 
represented by variations in the parameters. This confers substantial advantages in terms of algorithm 
development and re-use of code at run time, while facilitating the data collection for calibration and 
testing of the model. In the species-based approach, a different model is developed for each species and 
the parameters adjusted for each cultivar using so-called genetic coefficients.

Another dimension in which vegetation models vary is in the treatment of plant and population 
properties, with some models simulating growth and development of an individual plant (some species in 
the APSIM and DSSAT models) and others simulating these processes on a unit-area basis (most models). 
Most models mentioned in this chapter use a “top-down” approach for modeling crop processes, which 
means that the underlying mechanisms are modeled only one or two levels of resolution “below” the 
response variable of interest. The appropriateness of each approach is more related to the objective in the 
model application than with the approach itself. Large-scale or country-wide simulations that respond to 
climate and soil variables are likely more robust based on generic crop models (e.g. applications of EPIC 
in the Conservation Effects Assessment Project) while system biology studies may require a greater level 
of de-aggregation of physiological processes. The number of parameters of a model grows dramatically as 
the level of resolution increase, making the calibration difficult.
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The algorithms to simulate growth vary for different models. Some models use a detailed, multi-layered 
canopy approach in which photosynthesis is simulated at multiple heights through the plant canopy 
on a sub-daily basis (typically hourly) and aggregated for the entire canopy (e.g. WIMOVAC). Some 
models fully couple photosynthesis, transpiration, and the other component of the energy balance 
(Grant, 1995; Kremer et al., 2008), while others simulate these processes somewhat independently 
(Sadras et al., 2005).

One approach that has been used in models to predict biomass production (Clifton-Brown et al., 2004) 
to simulate and analyze crop growth is to express biomass accumulation as the product of a resource 
captured and the efficiency with which it is converted to biomass. When the resources are radiation, 
water, or nutrients in general, the expression can be formalized as follows:

B=RUE×fis×St

B=TUE×fis×ET

B=XnUE×Xn

where B is biomass produced (g m−2), RUE is the radiation-use efficiency which is a crop/cultivar 
specific parameter (g MJ−1), fis is the fraction of the incident solar radiation intercepted by the canopy, 
St is total incoming solar radiation (MJ m−2) in a given time interval, TUE is transpiration use efficiency 
(g B kg−1 H2O), ET is the evapotranspiration, fis is the fraction of ET which is crop transpiration (kg H2O 
m−2), and XnUE is the use efficiency (kg B kg−1 Xn) of nutrient Xn (kg m−2). The subject has been discussed 
and reviewed extensively for the radiation-based approach (Monteith, 1977; Sinclair and Muchow, 1999; 
Stöckle and Kemanian, 2009) and the transpiration based approach (Tanner, 1981; Tanner and Sinclair, 
1983; Kemanian et al., 2005). As opposed to the original crop growth analysis proposed by Watson 
(1952), this framework targets the canopy instead of a representative leaf area section, and offers a 
robust framework for hypothesis-driven research (Sadras et al., 2005). Most simulation models using 
this “big leaf” approach for simulating growth apply the radiation-based approach (e.g. EPIC) while 
a more sophisticated dual approach is used in APSIM, C-Farm, and CropSyst in which the minimum 
of two estimations of growth is used, one based on transpiration and the other based on radiation 
interception. Stöckle and Kemanian (2009) have shown that the transpiration based approach is robust 
in most circumstances, being applicable without any calibration in different environments provided that 
transpiration is correctly simulated.

The alternative to the “efficiency” based models are enzyme-kinetic models that calculate 
photosynthesis and transpiration based on a semi-mechanistic understanding of the effects of light, 
CO2, temperature, humidity, and nitrogen on leaf-level photosynthetic rates and stomatal conductance 
(Farqhuar et al 1980, Collatz et al 1992, Leuning 1995). Multi-layered coupled photosynthesis 
and transpiration models as those used in the Ecosys model (Grant, 1995), the model WIMOVAC 
(Humphries and Long, 1995) and that presented by Kremer et al. (2008). A recent study suggested 
that these multi-layered models perform better than efficiency based models, especially at short time 
intervals (Alton and Bodin, 2010).

Soil Carbon and Nutrient Cycling
One of the advantages of developing a bioenergy industry is the possibility of producing fuel while 
reducing the GHG emissions through direct reduction in emission and by offsetting fossil fuel usage. 
Therefore, simulating the components of the global warming potential of feedstock production systems 
is critical for a comprehensive assessment of the benefits and impact of bioenergy cropping systems.



Chapter 19: Modeling Tools and Strategies for Developing Sustainable Feedstock Supplies  323

Soil carbon cycling is an essential component of comprehensive agricultural and ecological models. 
Different approaches for simulation the soil carbon balance and its linkages with other nutrients have 
been discussed extensively elsewhere (Stewart et al., 2008) and a brief summary presented in Kemanian 
and Stöckle (2010) is used here to present examples of different models. Soil organic carbon is composed 
of an array of organo-mineral complexes whose turnover rates vary along a continuum from labile or 
fast turnover fractions to highly recalcitrant fractions. Representing this continuum has been a challenge 
for soil scientists and biological systems modelers. Early models of soil carbon (Cs) cycling consisted 
of one Cs pool and one residue pool (Henin and Dupuis, 1945). As basic knowledge on Cs dynamics 
expanded, new multi-compartment models represented explicitly the microbial pool and separated 
residues and Cs in several pools (Jenkinson and Rayner, 1977; McGill et al., 1981; Paul and N.G. Juma, 
1981; Parton et al., 1988; Verberne et al., 1990; Coleman and Jenkinson, 2005). Other models represented 
mathematically the Cs turnover rate continuum (Ågren and Bosatta, 1987).

Multi-compartment models separate Cs in pools with different turnover rates. Each pool  
decomposes due to microbial attack at different rates assumed to depend on the chemical recalcitrance 
and physical protection of the organic matter fraction: the higher the recalcitrance and physical 
protection the lower the turnover rate. The carbon lost by a pool can have as destiny the atmosphere 
(CO2 from microbial respiration), the microbial biomass pool, or another carbon pool through chemical 
reactions or physical aggregation. The transfer of carbon from one pool to another is accompanied by 
fluxes of other elements such as nitrogen and phosphorus. Six et-al. (2002) concluded after an extensive 
literature review that the success at matching measurable and modelable Cs pools has been minimal. 
Multi-compartment models such as the Century model (Parton et al., 1988) and Daycent (Del Grosso 
et al., 2005) have been widely used for assessing Cs evolution and variations of multi-compartment 
models have been incorporated in comprehensive cropping systems models (e.g. EPIC, Izaurralde et al., 
2006; CropSyst, Stockle et al., 2003).

Another approach to accommodate the continuum of turnover rates of soil organic matter is to simulate 
a single pool of soil organic matter whose turnover rate varies with the size of the carbon pool. This 
approach is followed in the C-Farm model (Kemanian and Stöckle, 2010). In addition, the size of the 
organic carbon pool in relation to an assumed maximum carbon carrying capacity or carbon saturation 
level (Hassink and Whitmore, 1997; Six et al., 2002; Stewart et al., 2008). While this approach requires 
further testing the number of core parameters of the model is lower than that of multi-compartment 
models, the spin-up period for equilibrating organic matters pools is not needed, and the interpretation 
of outputs is straightforward.

Nitrous Oxide Emissions
The high temporal and spatial variability of nitrous oxide emissions from soil under agricultural 
management makes measurements at regional or national scales impractical (Giltrap et al., 2010). For 
this reason, there is an opportunity to use process-based models to assess nitrous oxide which are 
important components of improving the efficiency of cropping systems (minimizing N losses) and 
reducing their impact on greenhouse gases emissions. However, the variability of N2O emissions makes 
modeling this process difficult in various ways. First, it requires an accurate spatial and temporal 
simulation of nitrate and oxygen content and heterotrophic respiration in soil. Second, there is large 
spatial variation in this process and the correct “average” condition for a field can be difficult to predict 
for different landscapes. 
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Nonetheless, a number of applications of simulation models to estimate nitrous oxide emission rates are 
presented in the literature. For example, Del Grosso et al. (2005) used the DAYCENT ecosystem model 
to estimate the nitrous oxide emissions for the main crops in the U.S. arguing that the combination of a 
process-based model that accounts for cropping system, soil type, climate and tillage and provide more 
informed decisions than a simple methodology which only considers an emission factor based on N 
applications. In the emission factor model, nitrous oxide emissions from cropping systems are mainly 
driven by fertilization events and there is no consideration to other processes that affect emissions such 
as fertilizer timing or application method. These authors suggest that converting the cropland area to no 
tillage can reduce, at the national scale, 20 percent of agricultural emissions of this greenhouse gas.

Another model that has been frequently used for simulation of nitrous oxide emissions is DNDC 
(Denitrification-Decomposition) (Li et al., 1992). Giltrap et al. (2010) reviewed the status of the model 
and the ability of the model to simulate GHG emissions under different ecosystems. They recognized 
that the model is a useful tool for modeling the environmental impact of agricultural practices and 
for improving our understanding of the underlying processes. Hsieh et al. (2005) used DNDC to 
simulate N2O emissions from a fertilized humid grassland in Ireland and found that major emission 
events followed nitrogen applications and heavy rainfall. The measured annual emissions were 11.6 
kg N ha-1 and the modeled prediction 15.4 kg N ha−1, showing that the modeled captured the major 
emission events reasonably well. This study also indicated that emissions are predicted to increase 
up to 22.4 kg N ha−1 under the future climate scenario of the Hadley Center model output, holding 
other factors constant. Although this model was used here in a grazing system (not a biomass crop) it 
shows how biophysical models can be applied to better assess the long-term sustainability of cropping 
systems. Clearly, biomass crops that reduce or minimize external inputs such as N fertilizer will be 
both energetically more favorable as well as more likely to cause a smaller impact on future climate. In 
addition, reduced use of N fertilizer will make biomass crops more competitive economically with other 
alternative sources of energy.

Sustainability of Biomass Production
There have been several efforts at developing and testing biophysical models with the objective of 
simulating M. × giganteus and P. virgatum biomass production and evaluating the sustainability and 
economic feasibility of bioenergy crops. A recent study by Jain et al. (2010) integrated a biogeochemical 
model, a simple crop model (based on RUE and light interception) and an economic analysis to evaluate 
the feasibility and competitiveness of biomass crops M. × giganteus and P. virgatum with alternative 
row crops building upon the work of Khanna et al. (2008). In terms of productivity their model 
estimated that yields of M. × giganteus are largely driven by temperature and radiation in the Midwest 
with maximum peak yields of 7-48 Mg ha−1. For switchgrass a similar pattern was found but average 
yields were about 3 times lower (10-16 Mg ha−1-maximum of 40 Mg−1). Under a low-cost scenario, M. 
× giganteus biomass was estimated to have a farm-gate cost between 34 and 80 $ Mg−1 (58-131 under 
the high-cost scenario). The combination of predicted yields and economic considerations identified 
Missouri as a more competitive state for biomass crops.

A similar modeling approach was used by Heaton et al. (2004a) where a model based on RUE 
previously calibrated for Ireland (Clifton-brown et al., 2000) was used to predict potential biomass 
production for M. × giganteus in Illinois. As in the model used by Jain et al. (2010), these results are 
primarily driven by radiation and temperature and they suggested peak average yields between 27-44 
Mg ha−1 for Illinois.

A different approach taken by Wullschleger et al. (2010) developed a database of P. virgatum 
productivity based on 39 field trials and estimated potential harvestable biomass based on a regression 
approach with maximum biomass yields projected in a corridor westward from the mid-Atlantic coast 
region to Kansas and Oklahoma. As opposed to Jain et al. (2010) who concentrated on the P. virgatum 
cultivar Cave-in-Rock, they evaluated a variety of lowland (southern and wetter habitats) and upland 
(mid and northern latitudes and drier habitats) P. virgatum cultivars. 
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Models that contain biogeochemical routines are suited for evaluating the potential for soil carbon 
sequestration and the fate of agricultural nitrogen. A subset of these (e.g. Century, DayCENT, CropSyst, 
C-Farm) are further able to evaluate trace gas emissions. As an example, Davis et al. (2009), using 
DayCent, evaluated the greenhouse gas emissions of M. × giganteus, corn, P. virgatum and native 
mixed species prairie. All of the perennial crops had lower net greenhouse gas emissions than corn. 
These authors found M. × giganteus to be a sink for GHG emissions in contrast to the net positive 
GHG emissions from corn, P. virgatum and mixed prairie. M. × giganteus also had a higher potential 
for building soil organic carbon than the other feedstocks. In addition, this study suggested that M. × 
giganteus is capable of fixing substantial amounts of atmospheric N, since this was a requirement for 
balancing the N budget in the DayCent models and potential N-fixing activity was measured in the 
rhizomes and rhizosphere of M. × giganteus in Illinois (Davis et al., 2009). Further research is needed to 
confirm the potential of biomass crops with substantial N fixing potential that can reduce the need for 
external fertilizer inputs.

One of the main concerns of the use of highly productive grasses for biofuel production is their 
accompanied increase in water use and its effects on the hydrologic cycle. Models that have hydrology 
sub-models are able to address questions about the potential impacts of biofuel crops on stream flow 
and nutrient run-off. Vanloocke et al. (2010) used Agro-IBIS to study the potential impact of growing 
M. × giganteus in the Midwestern U.S. Their simulations suggested that if M. × giganteus were to be 
grown in 10% of the land as suggested by Heaton et al. (2008) little impact will occur to the hydrological 
cycle. Only when simulating a replacement of current vegetation with 50% (or greater) of M. × giganteus 
noticeable changes were detected in the overall hydrological cycle of the Midwestern U.S. with an 
increase of 40-160 mm per year in total evapotranspiration. This higher ET under M. × giganteus is 
mainly a result of the longer growing season of M. × giganteus compared to annual crops such as corn 
and soybean. However, this small impact on the hydrological cycle can have major effects on climate as 
the area devoted to highly productive biomass crops is expanded.

Models that have a land surface model are designed to capture the full energy and mass balance of the 
ecosystem at a fast time scale. This enables these models to be coupled with atmospheric models and 
thus address questions about the potential atmospheric feedbacks that could result from large-scale 
biofuel crop deployment. These feedbacks could include changes in air temperature and precipitation 
patterns. This is an active area of research and integrated models capable of producing robust forecasts 
are under development.

The Ecosystem Demography model (ED) is a physiologically-based plant growth model that was 
originally formulated to model forest ecosystem dynamics (Medvigy et al., 2009). ED is being applied 
to evaluate woody biofuel crops such as hybrid poplar as well as to evaluate the potential use of 
native forest and other novel tree species (Wang and Dietze, in prep). ED has also been reformulated to 
represent perennial grasses and in particular is leveraging its representation of community dynamics to 
address the use of native grasslands and polycultures.

Databases
There are a number of datasets that play a critical role as drivers of biofuel crop models as well as in 
their parameterization, calibration, and validation. Below we highlight some of these resources. For 
drivers we focus on the availability of data related to weather and soils, while for model testing we 
focus on databases that compile site-level yield data and species-level ecophysiological data. There are a 
number of other resources that are commonly used to test plant and ecosystem models in other contexts 
but which are not yet utilized extensively by biofuel modelers, generally because there is a limitation of 
data due to the small spatial scales and short histories for many second generation crops. These include 
remote sensing, eddy-covariance, and USDA county-level data on crop and forest production. As 
research matures, and biofuel crops are planted on larger scales, modelers are encouraged to look more 
broadly to these and other emerging data sets.
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Biofuel Trait and Yield Database
The Biofuel Ecophysiological Trait and Yield Database (BETY-db, http://ebi-forecast.igb.uiuc.edu/) was 
created in order to compile the available field data about proposed “second generation” biofuel crops. 
There are two categories of data currently represented in the database: information on the productivity 
of different species and cultivars at different sites and “trait” information on the characteristics of 
different species. These data are also associated with detailed information on treatments that have 
been applied (e.g. different levels of N addition) and different management operations (e.g. dates of 
planting and harvest). Both types of data can be queried in a number of ways, for example by species or 
by location using a Google map interface. In the context of modeling biofuel crops the trait database is 
intended primarily to produce initial estimates for model parameters. Existing utilities in BETY-db have 
been designed to estimate the probability distributions of each trait based on a meta-analytical model 
(LeBauer et al in prep). Yield data across many sites are also critical for model validation. Beyond model 
applications, the database is intended to promote data sharing and cross-site syntheses. For example, a 
meta-analysis of the switchgrass data from this database suggested that perennial grasses grown with 
legumes may have comparable yields and lower inputs than fertilized monocultures (Wang et al., 2010). 
Similarly, analyses of trait data may be useful for pre-screening potential species or cultivars based on 
comparison to the traits of current crops. Finally, the spatial query in the database is intended to allow 
land managers and extension agents evaluate what yields have actually been achieved in a given region 
by different crops.

Meteorological Data
A crucial component needed for evaluating which crops to grow for bioenergy and where and how 
to grow them is the weather and climate data for a particular region. In order to make regional-scale 
projections of biofuel crops all models require estimates of climate that reflect the differences among 
regions. Furthermore, most models are dynamic and thus need detailed weather data with high 
temporal and spatial resolution. The critical variables are precipitation, temperature, yet most models 
also require or render better results when humidity, atmospheric pressure, and wind speed are also 
available. Carbon dioxide concentration is also needed by enzyme-kinetic photosynthesis models. Land 
surface sub-models, which explicitly calculate the overall energy balance, will typically need to be able 
to resolve the sub-daily cycles of these variables. A number of models that run at hourly time intervals 
are capable of using daily meteorological records and simulate hourly conditions based on typical 
patterns of temperature and radiation daily fluctuations (Campbell and Norman, 1998). The hourly 
fluctuations of precipitation, wind speed and relative humidity are harder to simulate realistically 
based on daily summaries and these are often considered uniform or simulated stochastically using 
appropriate algorithms.

Another variable of interest is solar radiation, with models varying from those that just require an 
overall light level to those that need radiation broken up by different spectral bands (e.g. photo-
synthetically active radiation, near infra-red, and long-wave infra-red) or into direct and diffuse 
radiation versus indirect or diffuse radiation. Since meteorological stations are not laid out on a well-
defined grid, modelers rely on data products that have been interpolated either statistically or, more 
often, via data assimilation in atmospheric models. Weather databases can generally be divided by their 
spatial and temporal resolution. Below we will describe some of the data products available at a state-
by-state level, nationwide, and globally.
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Statewide
The Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/) is an example of weather 
data that are synthesized from 7 different observing networks and represents an outstanding effort at 
integrating meteorological variables for different purposes. Hourly (or even every minute) data from 
ASOS (Automated Surface Observing Systems) and AWOS (Automated Weather Observing System) 
can be obtained from the Iowa Environmental Mesonet from a convenient interface (http://mesonet.
agron.iastate.edu/request/asos/1min.phtml). For Illinois, there is another weather database managed 
by the Illinois State Water Survey (http://www.isws.illinois.edu/data/climatedb/ and http://www.
isws.illinois.edu/warm/datatype.asp). These weather databases are suitable for use in most computer 
simulation models that typically run at daily or hourly time intervals. 

U.S. Nationwide
At the national scale there are a number of data products available, however there is a strong trade-off 
among data products in terms of spatial vs. temporal resolution. The PRISM database (Parameter-
elevation Regressions on Independent Slopes Model) has the greatest spatial resolution (a grid of 800-m) 
but has the coarsest temporal resolution (monthly). At the other extreme, NARR, the product with the 
highest temporal resolution (3 hrs) also has the coarsest spatial resolution (32-km). This trade-off in part 
reflects the fact that there is only a finite amount of information in the network of weather stations. It 
also reflects a switch between statistical and atmospheric models, the latter possessing computational 
constraints in reducing their spatial resolution but inherently operating at high temporal resolution.

PRISM-http://www.prism.oregonstate.edu/
PRISM uses meteorological station “point” data and a digital elevation model (DEM) to generate fine-
scale (800m) gridded estimates of climate parameters on a month-by-month basis (Daly et al., 1994). 
PRISM is designed specifically to capture the small-scale topographic variability in climate, using a 
DEM and a windowing technique to group stations onto individual topographic facets. PRISM develops 
a weighted precipitation/elevation (P/E) regression function to predict precipitation at the elevation of 
each cell using data from nearby stations, with greater weight given to stations with location, elevation, 
and topographic positioning (e.g. aspect) similar to that of the grid cell. In a model comparison, PRISM 
exhibited superior performance to various methods of kriging, and has been successfully applied to the 
entire United States (Daly et al. 1994).

Daymet-http://www.daymet.org
Daymet is a semi-mechanistic statistical model conceptually similar to PRISM that generates daily 
surfaces of seven variables: daily mean, minimum, and maximum temperature, precipitation, humidity, 
radiation, and day length (Thornton and Running, 1999). The Daymet data set spans 1980-2003 and has 
a 1km resolution. Data are downloadable either as time-series at point locations or climatological maps. 
Daily radiation is generated based on algorithms that produce adequate monthly averages but that 
show less variation than station or satellite based daily radiation measurements.

NARR-http://nomads.ncdc.noaa.gov/
The North American Regional Reanalysis (NARR) is an atmospheric-model data-assimilation product 
from NOAA that covers all of North America and parts of the Atlantic Ocean, Pacific Ocean, Central 
America and the Eurasian arctic. Historical climate data that has been assimilated through atmospheric 
models is typically referred to as “reanalysis” products and a number of other reanalysis data sets 
are available on a global scale and will be discussed below. The NARR has a spatial resolution of 
approximately 32 km and a 3 hour temporal resolution and spans the time period from 1979 to the 
present. Because the NARR is processed through an atmospheric model there are a large number of 
output variables available that include both the state of the land surface and the atmosphere.
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Global
At a global scale there is a diversity of different products available. In terms of raw weather station data 
and statistically interpolated products we briefly describe three sources: CRU, LocClim, and Worldclim. 
The CRU dataset is a product of the Climate Research Unit at the University of East Anglia (http://
www.cru.uea.ac.uk/cru/data/availability/) which provides gridded surface temperature datasets 
over the past 150 years and has played a critical role in diagnosing spatial patterns of climate change. 
LocClim (http://www.fao.org/sd/locclim/srv/locclim.home) is a UN FAO tool used to estimate 
eight different climate variables: Average, minimum, and maximum temperatures, precipitation, light, 
humidity, wind speed, and potential evapotranspiration. Estimates are available at monthly, 10-day, 
and daily time intervals. The grid resolution in LocClim is not predetermined; the utility performs 
interpolation on-the-fly based on latitude, longitude, and elevation. The underlying dataset in LocClim 
is the FAOCLIM data set of 28800 met stations. WorldClim is a high-resolution (1km) global gridded 
data set of average climate for 1950-2000 (Hijmans et al., 2005) for 23 climate variables: mean, minimum, 
and maximum temperature, precipitation, and 19 bioclimatic indicators. The same algorithm has also 
been used to produce climate maps for IPCC climate change scenarios (2020, 2050, and 2080 under 
the A2A and B2A emissions scenarios) and for the mid-Holocene (6000BP), last glacial maximum 
(21,000BP), and last interglacial (130,000BP).

In addition to statistically gridded data sets, there are also a few key global “reanalysis” data sets. 
The most commonly used are the ECMWF (European Centre for Medium-Range Weather Forcasts) 
“ERA-40” (Uppala et al 2005, http://data.ecmwf.int/data/) and the NCEP (National Center for 
Environmental Prediction) “Reanalysis 2” (Kanamitsu et al. (2002), http://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis2.html). Both these data products have a 2.5 degree resolution and 
a 6 hour time step. The ERA-40 covers 1957-2001 with a newer ERA-Interim product covering 1989-
2009 while the NCEP covers 1979-2008 with a newer “Twentieth Century” product covering 1871-2008 
(Compo et al., 2010). There is also a reanalysis from the Princeton Land Surface Hydrology Research 
Group (LSHRG, Sheffield et al 2006)) that attempts to correct biases in the NCEP reanalysis based on 
a number of satellite and surface data compilations, such as CRU, and which appears to have the least 
biased radiation (Ricciuto pers com). This data set is available at 3-hr and monthly time steps and a 1.0 
degree resolution.

Soil Databases
Another important component for estimating biomass productivity and ecosystem services of biomass 
production are soil characteristics. For a specific location, soil properties can be measured directly, but 
soil sampling and analysis is typically time consuming and costly; and for large regions prohibitive. 
Assessing sustainability of biomass production at a regional level requires incorporating soil 
information and here we describe the main sources of soil data on a national and global scale. 

SSURGO
The Soil Survey Geographic (SSURGO) database is available for selected counties and areas  
throughout the United States and its territories. In SSURGO mapping scales generally range from 
1:12,000 to 1:63,360 and this is the most detailed level of soil mapping done by the Natural Resources 
Conservation Service (NRCS). Maps are derived from point observation and conceptual models of 
soil formation (Soil Survey Staff, 2009). This database is linked to a National Soil Information System 
(NASIS) attribute database which provides the relative extent of the component soils and their 
properties for each map unit. The SSURGO map units consist of 1 to 3 components each (Figure 1). 
The database consists of two main components, a GIS polygon map of different soil map units and a 
set of attribute tables that describe different soil properties for those map units, often with attributes 
varying with depth. For the purpose of biomass production modeling, examples of information that 
can be queried from the database are: soil texture, soil organic matter, pH, available water capacity, soil 
reaction, and electrical conductivity.
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Figure 1: Structural diagram of USDA-NRCS digital soil survey data. Spatial data repre-sent map unit polygons, usually 
consisting of multiple un-mapped components. The complex hierarchy of map unit  component  horizon data is  

encoded through a series of 1-to-many tabular relationships. Reproduced with permission from Beaudette, 2008.

The database provides basic information from where the soil profile input required for the model has 
to be derived. This is not a simple task as the input, for instance the layering of the soil profile, is more 
detailed than the original information and the correlation between variables has to be conserved. Soil 
organic matter estimates for the profile and the distribution with depth has to be scrutinized carefully 
as using the raw data carelessly will most likely result in poor outputs. Pedotransfer functions are 
customarily used to predict soil properties from basic textural data (e.g. Saxton and Rawls, 2006). 

STATSGO2
For larger scale simulations (i.e. national scale) the U.S. General Soil Map, known as STATSGO2, 
consists of general soil association units, which is generalized soil information interpreted from detailed 
soil survey data and inferred from natural conditions where soil information is absent. It was developed 
by the National Cooperative Soil Survey and it consists of a broad-based inventory of soils and non-soil 
areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the 
approximate scale of 1:250,000.

The design of STATSGO is very similar to SURGO. The tabular data contain estimated data on the 
physical and chemical soil properties, soil interpretations, and static and dynamic metadata. Most 
tabular data exist in the database as a range of soil properties, depicting the range for the geographic 
extent of the map unit. In addition to low and high values for most data, a representative value is 
also included for these soil properties. This indicates that working at this scale there is a source of 
uncertainty that has to be taken into account, since the magnitude of the variability in soil variables of 
interest can be substantial.

Using the Soil Databases
The simplest way to access the data from the soil databases is the Web Soil Survey  
(http://websoilsurvey.nrcs.usda.gov/app/) which is an interactive web application that allows access 
to maps and soil characteristics and attributes.

Data for soil survey contains a tabular and spatial component. The spatial component is a vector file 
(ESRI shape file) with the “map unit” key as the main information. The tabular data contains four 
general classes of information: 1) chemical and physical data (pH, CEC, particle size distribution, etc.), 
2) morphologic data (horizonation, etc.), 3) taxonomic data and 4) interpretations for land use and 
engineering. The vast number of decisions made based on soil surveys reflect the inherent value of this 
information (Beaudette, 2008).
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An example application of the STATSGO2 database is the rasterized calculation of available water 
capacity, using a 32 by 32 km grid over the conterminous U.S. (Figure 2). The available water capacity of 
a soil is a crucial variable in estimating the potential biomass productivity of different regions.

Figure 2: Available water capacity (proportion) based on a 32 by 32km grid over the conterminous U.S. This map was  
produced by rasterizing the STATSGO2 and performing a weighted average over different horizon depths and the  

proportionate contribution of soil components.

Global Scale Soils Data
At a global scale it is difficult to compile all the different national soils maps that use different 
resolutions, classifications, and sampling methods. Fortunately the U.N. Food and Agriculture 
Organization does provide a global-scale soils map (http://www.fao.org/nr/land/soils/en/). This 
map is fairly coarse in resolution, but does provide information on soil texture and soil depth that is 
required to drive the soil moisture sub-models of most vegetation models. To our knowledge there 
is not a global scale map of soil carbon stores, soil nutrients, or other soil biogeochemical rates or 
properties, though model-based estimates of some of these do exist as part of climate change research 
(IPCC, http://www.ipcc-data.org/).

Land Use Databases
Other databases of importance are those providing information about land cover. This is useful 
when performing detailed landscape-level assessments of the impact of crops, trees or other large 
scale practices. One example is the national land cover database from the Multi-Resolution Land 
Characteristics Consortium (MRLC, www.mrlc.gov). This is available for the 50 U.S. states and it 
provides classification of land on a 30 by 30m resolution that can be used to plan where biomass crops 
might be deployed at a more detailed level. One disadvantage is that the latest version is from 2001 and 
many changes might have occurred to land use since then. Examples of land classification are: open 
water, grassland, cropland, mixed forest, etc. Another useful database is the USDA-NASS Cropland 
Data Layer (CDL) which contains crop specific information. The CDL Program annually focuses on 
producing digital categorized geo-referenced output products using imagery from the Resourcesat-1 
AWIFS and the Landsat 5 TM satellites (http://www.nass.usda.gov/research/Cropland/SARS1a.htm). 
At a global scale the MODIS satellites provide an annual 500m land cover estimate from 2001 to the 
present (http://modis-land.gsfc.nasa.gov/). These maps provide up-to-date land cover information and 
can be useful for both modeling outside the U.S. and for assessing land cover change.
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Model Assessment
Models are only as good as the data that go into building them and thus model assessment is a critical 
activity. We can conceptually break assessment down into two phases, training and testing. Activities 
in the training phase are focused on using data to estimate model parameters while the testing phase is 
focused on confronting the model with independent data.

There are a number of different approaches used during the training phase and we will conceptually 
break them down into what we call parameterization and calibration, though these labels are not 
universally used and not all techniques fit nicely into these definitions. By parameterization we refer 
to the process of setting model parameters where there is a direct mapping of field or experimental 
data to a specific parameter or set of parameters. This definition is distinct from usages found in other 
fields, such as atmospheric science, where most model parameters are known physical constants and 
parameterization instead refers to the choice of a functional form for modeling a process statistically 
rather than mechanistically. Examples of this could range from 1:1 mappings between parameters 
and data, such as the C:N ratio of a tissue or the specific leaf area of a leaf, to parameters that are fit 
statistically but still have a direct link to data, such as the estimation of photosynthetic parameters 
from an A/Ci curve or an exponential decay rate from a litter bag experiment. Parameterization has 
traditionally occurred by reference to the scientific literature or using expert opinion to fix parameter 
values. In the past it has often been difficult for the non-expert to see where specific model parameters 
have come from, which has been known to engender distrust of models. Some of the disadvantages of 
traditional parameterization are that error distributions associated with parameters have rarely been 
reported and there has been a bit of subjectivity in choices about why parameter values from one study 
were chosen over another. Newer meta-analytical techniques aim to get around this because they allow 
parameters to be constrained based on the combined weight of multiple studies and provide a formal 
estimate of parameter uncertainty that can be used for error propagation (LeBauer et al in prep).

In contrast to parameterization, where there is a direct mapping between data and parameters, we 
use the term calibration to deal with the situation where the connection between data and parameters 
is often less direct but more holistic. In general during calibration we are comparing a model output 
to data, for example the comparison between predicted and observed yield. Yield is not determined 
by a single parameter but is influenced by many different parameters in many different processes. 
Another important distinction between parameterization and calibration is that the whole model has 
to be run in calibration while in parameterization we only need to know the biological meaning of a 
parameter or a single functional relationship. Because of this, calibration methods end up being much 
more computationally intensive. However, there are a few advantages of calibration. First, it allows the 
estimation the overall error variance of the model. Second, it potentially allows for the estimation of 
covariances between parameters, which can often be substantial and tend to reduce the overall model 
uncertainty. Third, calibration allows one to estimate model parameters that are difficult or impossible 
to measure directly in the field, for example, carbon allocation (Miguez, 2009).

There are a number of statistical methods available that can be used during calibration. In general it is 
best to base calibration on objective criteria rather than simply “tuning” the model-manually adjusting 
free parameters to make the model match the data. The statistical approaches to calibration have 
sometimes been referred to as “inverse modeling” because it is the reverse of “forward” modeling 
where a model is run forward given a set of known parameters in order to produce an unknown output. 
Instead in inverse modeling the desired output is known (i.e. data) and the goal is to figure out what 
parameters produce the required outputs. We will discuss three approaches to calibration: minimization 
of an objective function, maximization of a likelihood, and estimation of the posterior parameter 
distribution. In the first approach the modeler must specify some function that they would like to 
minimize. Traditionally, the mean squared error (MSE), the sum of squares error (SSE) or other function 
that expresses the mismatch between the model and the data, which will be minimized.
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Where Oi is the observed data, Si is the simulated data and n is the total number of observations.

Given the complexity of vegetation models analytical solutions to these minimizations typically do not 
exist and one uses a numerical optimization algorithm (Bolker, 2008). The second approach, maximum 
likelihood, is similar to the objective function approach except that instead of minimizing an objective 
function one is instead calculating the probability that a certain parameter set would have produced the 
observed data. This probability statement is referred to as the likelihood function and the goal is usually 
to find the most likely parameter values, i.e. those that maximize the likelihood function. As with 
objective functions, likelihood functions are usually evaluated using numerical optimization. The most 
common choice of probability distributions is to assume that error is normally distributed, in which 
case the maximum likelihood solution is equivalent to the sum of squares objective function, which is 
likewise the most commonly chosen objective function (Givens and Hoeting, 2005).

An example in the context of biomass crops where the objective was to produce reliable estimates 
of switchgrass productivity used a combination of parameters derived from the literature and 
optimization using a numerical algorithm minimizing the mean sum of squares of the error function 
(Di Vittorio, et al. 2010). While the authors were able to obtain several parameters directly from the 
literature, they identified 5 parameters which needed to be optimized based on data. These parameters 
were mostly related to root and carbon dynamic processes which are seldom measured in detail in 
individual studies. This effort at identifying uncertainty in parameters and evaluating the robustness of 
model simulations is crucial for the generation of robust forecasts of feedstock availability.

The third alternative for calibration, estimation of the posterior parameter distribution, is also  
based on probability theory, just like maximum likelihood, but instead employs Bayes’ Theorem in 
order to estimate the full probability distribution of a parameter (Gelman et al., 2004). Bayesian  
methods are popular because most often what we are actually interested in is the probability of 
the model parameters not the probability of the data, which is calculated in maximum likelihood. 
Furthermore, because these methods provide a whole probability distribution for the parameter,  
rather than a single optimum value, they more directly capture and propagate model uncertainty. 
Bayesian posterior parameter distributions are usually estimated by Markov Chain-Monte Carlo 
(MCMC) numerical techniques, which tend to be more computationally demanding than numerical 
optimization (Brooks, 1998).

Before proceeding on to model testing we also wanted to briefly touch on data assimilation methods, 
which have received a lot of attention in the modeling literature lately. The exact definition of data 
assimilation varies from discipline to discipline and many modelers refer to techniques that we 
would lump under calibration as data assimilation. Traditionally in atmospheric science, where data 
assimilation has seen the greatest use, the technique referred strictly to methods for estimating the value 
of a model’s state variables from data, rather than estimating model parameters. Data assimilation can 
further be broken down into off-line methods, where all the data are available, and on-line methods, 
where data assimilation is being performed in real time and each new data point arrives in order with 
analyses being updated at each time point. Wikle and Berliner (2007) give a good overview of both 
classical and Bayesian approaches to data assimilation while Lewis et al. (2006) provided a detailed 
treatment of these methods.
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Finally, after the model training phase models then often undergo a testing phase, which is sometimes also 
referred to as model validation or model verification. Typically some portion of the data collected is withheld 
during the training phase for use in the testing phase, since the aim is to provide an independent test of 
model performance rather than testing the model against the same data that was used for calibration. During 
testing model parameters are either fixed to the values estimated during the training phase or, if Bayesian 
methods were used, are sampled from their posterior distributions. In the latter it is customary to run the 
model many times to generate an “ensemble” estimate of model uncertainty. While modelers often refer 
to this phase a model validation, technically we can never assess if the model is valid in all situations, and 
indeed all models will be wrong under some conditions (Oreskes et al 1994). Rather we are attempting to 
discern under which conditions the model is reliable and which it is not.

A major challenge in modeling efforts is to integrate databases, field experiments, biophysical models while 
using optimization and sensitivity analysis techniques. A strategy for simulating productivity and assessing 
sustainability of biomass feedstocks is to integrate databases, biophysical models and statistical approaches. 
Miguez et al (2009) developed M. × giganteus harvestable biomass projections by integrating weather 
data from North American Regional Reanalysis, the U.S. general soil map (STATSGO2) and a biophysical 
model (Figure 3). A recent example of data and model integration, specifically targeted to evaluating the 
sustainability and productivity of biofuel crop systems was presented by Zhang et al. (2010). Within their 
spatially explicit framework, they integrated weather data from NARR, the EPIC biophysical model, the 
SSURGO soil database, Land use, hydrological unit and political boundaries into a homogeneous spatial 
modeling unit. Using an optimization algorithm they were able to develop a set of optimal solutions that 
represents a compromise between N losses, energy production and greenhouse gas emissions.

Figure 3: M. × giganteus simulated harvestable biomass production for the U.S. integrating weather  
(NARR) and soil (STATSGO2) databases.

Conclusions
In this chapter we outlined the characteristic of existing models and databases that are useful for regional 
assessments of productivity and sustainability of biomass feedstocks along with a summary of statistical 
approaches for model training and testing.

An ideal framework would provide seamless access to databases required for model development or 
adaptation. It is of utmost importance that these databases are maintained and quality control criteria are 
used. The databases can later be used in testing the model simulations as well and this does not need to be a 
static process, but rather a continuous process in which models are developed, tested and refined.
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Ultimately, the objectives of a particular application dictate the appropriate balance among model complexity, 
data availability, and desired outcome. In this context, simulation models are a powerful component of 
systems for multi-criteria assessment of the productivity and impacts of biofuel feedstock production. 
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