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Abstract. Our limited ability to accurately simulate leaf phenology is a leading source of
uncertainty in models of ecosystem carbon cycling. We evaluate if continuously updating
canopy state variables with observations is beneficial for predicting phenological events. We
employed ensemble adjustment Kalman filter (EAKF) to update predictions of leaf area index
(LAI) and leaf extension using tower-based photosynthetically active radiation (PAR) and
moderate resolution imaging spectrometer (MODIS) data for 2002–2005 at Willow Creek,
Wisconsin, USA, a mature, even-aged, northern hardwood, deciduous forest. The ecosystem
demography model version 2 (ED2) was used as the prediction model, forced by offline
climate data. EAKF successfully incorporated information from both the observations and
model predictions weighted by their respective uncertainties. The resulting estimate
reproduced the observed leaf phenological cycle in the spring and the fall better than a
parametric model prediction. These results indicate that during spring the observations
contribute most in determining the correct bud-burst date, after which the model performs
well, but accurately modeling fall leaf senesce requires continuous model updating from
observations. While the predicted net ecosystem exchange (NEE) of CO2 precedes tower
observations and unassimilated model predictions in the spring, overall the prediction follows
observed NEE better than the model alone. Our results show state data assimilation
successfully simulates the evolution of plant leaf phenology and improves model predictions of
forest NEE.

Key words: data assimilation; ecosystem demography model; ED2; leaf-out; phenology; prediction;
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INTRODUCTION

Leaf phenological cycles of budburst, leaf expansion,

senescence, and leaf drop are a major control on

growing season length and thus have a large impact on

net ecosystem productivity, carbon allocation patterns,

and the annual oscillation of atmospheric CO2 (Rich-

ardson et al. 2013). The presence or absence of leaves

drives local radiation budgets and micrometeorological

variables by changing the turbulent, radiative, and

consequently, thermal properties within the canopy

(Moore et al. 1995). The annual cycle of spring

emergence and fall senescence in deciduous forests is

affected by plant traits, as well as ambient atmospheric

and soil conditions, with temperature having a large

impact on the timing of these transitions (White et al.

1997). Phenology also varies from tree to tree with a

large interannual and spatial variation (Richardson et

al. 2010). Currently, predicting how phenological cycles

will react to climate change is a large source of

uncertainty in ecosystem carbon flux projections (Rich-

ardson et al. 2012).

Climate and ecological processes are strongly coupled,

and models predicting phenological cycles must account

for this coupling (Levis and Bonan 2004). Approaches

to modeling phenology range widely from determining

parameters by fitting curves to observations (Bradley et

al. 2007) to estimating a temperature period that triggers

phenological changes (Zhang et al. 2004). However, a

unifying feature of models based on these approaches,

and included in most ecosystem models, is their

tendency to have trouble predicting both the start and

the length of the growing season (Kucharik et al. 2006,

Richardson et al. 2012). Since phenological cycles have

high interannual variability and a complex coupling

with the climate that is not yet fully understood,

phenological parameters determined by fitting data to

models have had limited utility in predicting future

phenological cycles (Richardson et al. 2012). Thus

accurately predicting phenology, even if the relationship

between phenology and temperature is improved,

requires a method that updates model states or

parameters with observations.

Data assimilation provides a potential means for

constraining phenology in ecosystems models by syn-

thesizing information from multiple different data

sources. In doing so, data assimilation creates a

statistically optimal estimate based on the relative
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uncertainties of the different data sources and the

model. Data assimilation is widely used in the geosci-

ences (Bertino et al. 2003, Chen 2011, Viskari et al. 2012)

and is an essential part of weather forecasting (Lorenc

1986, Rabier et al. 2000). The use of data assimilation in

ecological modeling is relatively new but is increasing

rapidly (McKane et al. 1997, Raupach et al. 2005,

Williams et al. 2005, Zobitz et al. 2011, Dietze et al.

2013).

Data assimilation techniques can be divided between

parameter and state data assimilation approaches. In

parameter data assimilation, model parameters are

estimated by comparing the differences between model

output and observations (e.g., Braswell et al. 2005). The

use of parameter data assimilation has to date been

more common in ecological systems. For example,

Jeong et al. (2012) and Medvigy et al. (2013) used

parameter data assimilation to illustrate how the

phenological cycle of photosynthetic capacity affects

gross primary productivity (GPP). Parameter data

assimilation provides insight into processes and espe-

cially to the coefficients describing these processes, but

assumes that the equations are sufficiently accurate

descriptions of the processes in question. In addition,

predictions made with coefficients estimated from

parameter data assimilation cannot eliminate the prop-

agating uncertainty that stems from unexplained vari-

ability and uncertainty in the initial conditions.

Therefore, for ecological processes where current models

have large residual error, parameter data assimilation is

unlikely to lead to noticeable improvements in predictive

capacity.

While previous phenological modeling has focused on

parameter estimation, the substantial interannual vari-

ability in phenological processes and the limited success

of phenology models suggests that it may be more

effective to focus on the estimation of the status of the

canopy itself. In state data assimilation, the state

variables (e.g., quantity of leaves present) are estimated

by updating state predictions with observational data

(Montzka et al. 2012). By continuously updating the

state predictions with observation data, state data

assimilation creates a more certain estimate of the

current, which reduces the uncertainty in subsequent

predictions. Thus, if a reliable descriptive model of the

system is available, state data assimilation provides

better predictions than parameter data assimilation.

While state data assimilation has been implemented

for constraining the carbon cycle (Kaminski et al. 2013,

Zhou et al. 2013) and the hydrological cycle (Seo et al.

2009), it is not yet as widely used as parameter data

assimilation and to our knowledge has not previously

been applied to phenological modeling. Additionally,

the majority of state data assimilation examples above

have focused on single variable state estimation instead

of simultaneously estimating multiple variables using

multiple data constraints. It is important to note,

though, that while both approached are considered data

assimilation, the challenges in implementing and using

state data assimilation differ from those of parameter
data assimilation.

We applied state data assimilation to predict the
phenological cycle for a well-studied, mature, even-aged,

northern hardwood, deciduous forest in northern
Wisconsin using the ecosystem demography 2 model

(Moorcroft et al. 2001, Medvigy et al. 2009). As
variables associated with phenological events have large
inherent variability and measurement uncertainty, our

primary motion was to find out if state data assimilation
is a more suitable approach for estimating of the

phenological cycle than fitting individual parameters.
In order to predict both spring and fall phenological

transitions, two phenological state variables, leaf area
index (LAI) and percent leaf elongation were estimated,

along with associated parameters representing the spring
and fall days of year when the canopy is at 50% peak

LAI. The interaction of phenology with LAI is often
ignored (Asner et al. 2003), so an additional objective of

our study is to clarify this relationship and determine
whether different LAI observations can be considered

measurements of the same variable. Finally, we exam-
ined what challenges need to be addressed before

implementing a functional operational state data assim-
ilation system for phenological systems. To demonstrate
an approach that could be applied in real time to

forecast phenological changes, we only used observa-
tions current or preceding the state prediction instead of

smoothing the prediction to encompass both past and
future data. Observations from two different data sets

were used to determine their impact on the phenological
forecast and to evaluate the benefits from fusing

multiple data sources.

METHODS

Data assimilation

The Kalman filter (KF; Kalman 1960, du Plessis

1967) is a sequential state data assimilation method,
where a state estimate is created by combining
information from new observations and previous states.

For a forward filtering problem, where observations
ahead in time are not available, KF produces a

statistically optimal solution. KF is essentially an
iterative two-step process: (1) during the state propaga-

tion step (forecast step), the process model evolves both
the state and the associated uncertainty to the next

observation time; and (2) during the observation
updating step (analysis step), a new state estimate and

an associated uncertainty is determined from the
available information sources weighted by their individ-

ual uncertainties
These two steps are applied iteratively as new

observations become available. Thus, the state estimate
is propagated to the next observation time during the

first step, and then the state estimate for that time is
updated based on new observations. The propagated

forecast state, also referred to as the background state,
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contains information from prior observations propagat-

ed to the current observation time. By using a dynamical

forecast model instead of a simple diagnostic model, the

forecast is constrained by the current understanding of

the system dynamics and evolves over time. An

ecological example of the Kalman filter is Carbon-

Tracker, which constrains GPP and plant respiration

using CO2 mole fraction observations (Peters et al.

2007).

A general challenge for KF applications is estimating

the uncertainties in the prediction, which can be both

computationally and methodologically difficult to ap-

proximate. For this application we chose the ensemble

adjustment Kalman filter (EAKF; Anderson 2010) from

among a number of variants of KF as the data

assimilation technique. The EAKF is similar to the

more well-known ensemble Kalman filter (EnKF,

Evensen 1994, Evensen 2003) in which an ensemble of

model runs, each with a different state vector, is used to

propagate uncertainty to the next observation time.

Ensemble methods are an alternative to transforming

the matrix of state estimate uncertainty as in extended

nonlinear versions of the KF technique (Jazwinski 1970,

Gelb 1974). Compared to analytical approaches to KF,

which involve additional computational burdens, such

as solving for the Jacobian matrix of the model,

ensemble methods only require the nonlinear forward

model, as the nonlinear model components affect the

prediction uncertainty. In both the EnKF and EAKF,

the forecast state is determined by the sample mean and

covariance over the ensemble. However, the methods

differ in how they update the new state in the analysis

step based on observation. In EnKF, the new states are

stochastically sampled from the estimated analysis state

distribution, while in EAKF, the updated state vectors

are instead each linearly adjusted so that the ensemble

mean and variance matches the mean and variance of

the estimated state distribution. In this way the

information from the previous state vectors is not lost

during the state update phase. The associated back-

ground state uncertainty is calculated from the spread in

the state vector values.

The EAKF used in this analysis was implemented

within a larger workflow structure provided by the data

assimilation research testbed (DART; Anderson et al.

2009). DART is an open source EAKF framework

developed at National Center for Atmospheric Research

(NCAR) that allows users to insert a model in a few

simple steps and explore a wide array of possible data

assimilation approaches. DART is widely used, well

documented, and freely available online.4 All the

interfaces required to couple the ecosystem demography

model version 2 (ED2) model to DART are part of the

predictive ecosystem analyzer (PEcAn) ecoinformatics

workflow (Dietze et al. 2013, LeBauer et al. 2013;

workflow available online).5

The state vector in EAKF, and in KF in general, can

contain both observed and unobserved variables.

Observed variables are adjusted by direct comparison

with observations. Unobserved variables are adjusted

based on their correlation with observed variables using

a linear regression model fit across the ensemble of

model runs. As all the chosen variables in this analysis

are from the same location and are related, there was no

need to limit the error covariances between different

vector members (Hamill et al. 2001, Whitaker and

Hamill 2002). In order to simplify the initial testing, the

uncertainties were not inflated (Anderson and Anderson

1999, Anderson 2009).

A state data assimilation application requires three

components: (1) observations of the state necessary for

the observation update, (2) a forward model, which

predicts the state for the next observation time, and (3)

an observation operator, which translates the model

state into an equivalent observation. We will describe

each of these. The observation operators are discussed

along with the respective observations.

Observations

Observations from Willow Creek (US-WCr) eddy

covariance tower (45.80598 N, 90.07998 W) in the

Chequamegon-Nicolet National Forest in Northern

Wisconsin, USA (Cook et al. 2004) were used to test

the method. This site is part of the larger Chequamegon

Ecosystem Atmosphere study project (ChEAS; Chen et

al. 2008) and is part of the AmeriFlux network

(Baldocchi et al. 2001). Willow Creek is a mature,

even-aged, northern hardwood, deciduous forest dom-

inated by sugar maple, with smaller quantities of ash

and basswood. The average stand age is approximately

80 years. Eddy covariance measurements have provided

near-continuous observations of half-hourly CO2 and

H2O exchange between the forest and atmosphere since

1999. We used observations from years 2002–2006, for

which both phenological and meteorological measure-

ments were available.

Changes in leaf area index (LAI, one-sided projected/

silhouetted green leaf area per unit ground surface area

sensu definition four in Asner et al. [2003]) are strongly

dependent on phenology, and thus, LAI was the target

variable observed in this study. Measurements of LAI,

especially those employing optical methods, can be

subject to numerous sources of observation error (Asner

et al. 2003). Much of this uncertainty is mitigated by our

selection of a forest with relatively uniform composition

(temperate, broadleaf, deciduous). This uniformity

contributes to a more sharply defined phenological

transition period and limits the interacting sources of

uncertainty present in LAI estimates in forests contain-

4 http://www.image.ucar.edu/DAReS/DART/ 5 http://github.com/PecanProject
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ing both deciduous/evergreen and broadleaf/needleleaf

species (Asner et al. 2003). It should be noted that the

maximum and minimum LAI depend on the size,

density, and species of the vegetation rather than

phenology. Thus state data assimilation will not affect

those values. We used two methods of observing LAI:

areal-averaged measurements from satellites and point

measurements of intercepted radiation from a tower.

MODIS measurements.—Moderate resolution imag-

ing spectrometer (MODIS; Barnes et al. 1998) measures

reflected solar and emitted thermal radiation on 36

separate spectral bands. The measurements used here

are from NASA’s Terra and Aqua satellites, which have

a swath of 2330 km and produce a global coverage every

one to two days. We used the MODIS MOD15A2 LAI

product (Yang et al. 2006a), which has a resolution of 1

km and is combined into 8-d averages. In generating the

data product, the daily observations are screened based

on cloud cover and other quality assurance/quality

control (QAQC) criteria, so an 8-d average does not

necessarily contain observations from all 8 d. The

default MODIS LAI QAQC provided by the product

was used as the quality control metric. The MODIS-

derived LAI estimates from hereafter are referred to as

MODIS LAI.

The MODIS observations used were for the single

pixel corresponding to the tower location. Since the

MODIS product output is the LAI value, no separate

observation operator was necessary to simulate

observations from model variables for the data

assimilation process. However, this prevents the

examination of different time windows than those

provided and the independent estimation of associated

uncertainties. Here, MODIS uncertainties were taken

from the given standard deviations given by the

MODIS product unless it was smaller than the

threshold uncertainty 0.66 m2/m2 in which case the

threshold uncertainty was used (Yang et al. 2006b; see

statement available online).6 This uncertainty, howev-

er, is the averaged uncertainty over all land cover

types. It is not known how well this value applies to

the deciduous forests of our study area as, to our

knowledge, there have been no further studies

assessing MODIS LAI uncertainty. Further, MODIS

estimates that a fraction of the forest in this pixel is

conifer, as indicated by the nonzero wintertime LAI,

yet census data of plots surrounding the tower

demonstrate a only a minor conifer component,

adding to uncertainty in MODIS LAI values.

Flux tower radiation measurements.—Since LAI is not

measured directly from the flux towers, we used paired

above-canopy (30 m) and below-canopy (2 m) measure-

ments of photosynthetically active radiation (PAR; 400–

700 Nm solar radiation; LI-190S Quantum Sensor, LI-

COR, Lincoln, Nebraska, USA). The LAI estimated

from the PAR sensors is referred to as tower LAI.

PAR at the lowest level of the canopy (I2m) can be

modeled as (Monsi and Saeki 2005)

I2m ¼ I30me�kðmþLAIÞ ð1Þ

where I30m is above canopy PAR, m represents the area

of branches and other nonphotosynthetic canopy

surfaces, and k represents the extinction coefficient.

From Eq. 1, it is straightforward to estimate flux tower

LAI (LAIF) as a function of the fraction of I2m over I30m

LAIF ¼
�log

I2m

I30m

k
�m ð2Þ

where k was set to 0.52 based on calibrations done in the

region (Cook et al. 2008), and m was approximated to

be 1.45 6 0.27 m2/m2 (mean 6 SD) using the average

beginning of the year (prebud-burst period; January,

February, March) radiation measured by the flux tower

in 2002–2005 and assuming LAIF is zero over that

period. This assumption is reasonable given the lack of

evergreen species within the field of view of the below

canopy PAR sensors. The standard deviation for k was

approximated as 0.05 units based on Chen and Black

(1991).

As a nonlinear function of two separate observa-

tions (I2m and I0), tower LAI cannot be linearly

obtained from the model output and thus was

precomputed for each measurement time rather than

incorporated into the observation operator. The

observation operator averages the LAIF over a chosen

time window and only includes measurements midday

(12:00 local time). In addition, only I2m and I30m
values that were above cut-off values of 10 and 1000

lmol�m2�s, respectively, were included in the average.

The cut-off values were chosen to be high enough to

eliminate cloudy days. The observation uncertainty

for PAR was approximated as having a coefficient of

variation of ;10% from the AmeriFlux quality

assurance measurement reports (Boden et al. 2013).

The compound uncertainty for a single tower LAI

measurement is independently calculated for each time

from the uncertainties of PAR, m, and k with the

combined uncertainty formula

rLAI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log

I2m

I0

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rI2m

I2m

� �2

þ rI30m

I30m

� �2
s

�log
I2m

I30m

0
BBBB@

1
CCCCA

2

þ rk

k

� �2

vuuuuuuut

2
6666664

3
7777775

2

þr2
m

vuuuuuuuuut
ð3Þ

where rLAI, rI2m, rI30m, rk, and rm are standard

deviations associated with LAIF, I2m, I30m, k, and m,

respectively. The uncertainty for the averaged tower

measurements (rflux) is

6 http://landval.gsfc.nasa.gov/ProductStatus.php?Product
ID¼MOD15
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rflux ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
r2

LAI;i þ 2

XN

i¼1

XN

j¼iþ1
ri; jr2

LAI;i

N

vuuut
ð4Þ

where N is the number of measurements included in the

average, ri, j is the autocorrelation coefficient between

two observations and i and j are the running observation

indexes for the averaging window. By calculating the

autocorrelation function over summer months, the

autocorrelation was approximated as 0.15 for a lag of

1 d and 0 after that.

Forward model

The ecosystem demography model version 2 (ED2;

Medvigy et al. 2009) is a terrestrial biosphere model

and was used as the forward model to predict LAI, as

well as fluxes of carbon, water, and energy. ED2 uses a

size- and age-structured approximation to incorporate

both stand-scale vertical canopy structure and land-

scape-scale heterogeneity while still representing re-

gional-scale dynamical processes. Both the climate

forcing and initial tree distribution are read in to the

model off-line based on micrometerological measure-

ments made from the flux tower and vegetation census

data from the tower footprint, respectively (measure-

ments available online).7

The prescribed phenology subroutine in ED2 (Medv-

igy et al. 2009), calculates a green leaf factor (GLF),

which represents the elongation fraction of the leaves,

from 0 to 1, according to

GLF ¼ 1

1þ ða 3 doyÞb
ð5Þ

where doy is the day of year, a is the reciprocal of the

day of year at which 50% canopy expansion occurs, and

b is an exponent controlling the rate of change. The

parameters a and b were empirically derived from

MODIS phenology observations presented in Zhang et

al. (2003) and depend both on the year and the season.

The model switches between spring and fall phenological

schemes on the first day of January and August,

respectively. In ED2, LAI is a product of leaf biomass,

specific leaf area, and stem density. Leaf biomass in ED2

is an empirical allometric function of dbh (1.4 m) scaled

by leaf elongation, thus the LAI predicted by ED2 is

directly proportional to GLF.

In Eq. 5, GLF is an emergent variable, as the state at

one point in time is not directly affected by preceding

values. For data assimilation purposes, the formulation

was changed to generate a dynamical model that still

retains the original prediction when run outside of data

assimilation. To do this we adjust the leaf expansion rate

parameter (b) as

btþDt ¼
1

logða 3ðdoy� 1ÞÞ log
1

GLFðtÞ � 1

� �
ð6Þ

GLFðt þ DtÞ ¼ 1

1þ ða 3 doyÞbtþDt
ð7Þ

where t represents time and Dt is the time step. This

formulation produces the same GLF values as Eq. 5, but

makes it a function of the GLF at the previous time.

This is crucial for the data assimilation application, as

now GLF(t) affects GLF(t þ Dt). Due to issues with

numerical instability, Eqs. 6 and 7 were only used if

GLF was larger than 0.0001 and smaller than 0.9999.

Otherwise, GLF was determined from Eq. 5. Altering

GLF in Eqs. 6 and 7 affects subsequent LAI and bt. LAI

predicted by the model without assimilation observa-

tions shall be referred to as model LAI. LAI produced

with data assimilation will be referred to as estimated

LAI.

Testing setup

The state vector (x) for DART includes three

variables: LAI, GLF, and parameter a from Eqs. 6

and 7. It is important to note that DART uses ED2 to

predict LAI at the observation time by propagating the

previous state estimate. The initial spring ensemble

values for a were drawn from a normal distribution with

a mean of 0.007362885 d�1 (;16 May) and a standard

deviation of 0.0003776807 d�1 (;7 d) calculated from

offline ED2 run over the study period (Zhang et al.

2003). Both LAI and GLF are initially set to 0. By

affecting the start of the leaf-out during spring and

senescence in fall, parameter a generates an initial spread

for GLF and LAI in the ensemble. Because a is season-

specific, the mean and spread of this parameter is

reinitialized to mean of 0.003637635 d�1 (;2 October)

and a standard deviation of 0.00007665897 d�1 (;6 d)

when switching between spring and fall phenologies on

August 1st. The initial value for b for each year was set

as �65 for spring and 58 for fall. These values were

chosen averages of the offline ED2 run. Since b is

constantly recalculated according to Eq. 6, the initial

choice has only a very minor impact on results. This was

confirmed by comparing results with varying initial

values of b.

The spin-up run for the ED2 variables started from

spring 1998. As the LAI observations for the winter

months were missing and the state variables change only

later in the spring, the ensemble runs were started on 11

April, which was before the beginning of the leaf-out for

all values used for a. As the MODIS observation

windows always start on 1 January, data were assimi-

lated for each year separately in order to match the

measurement windows and the DART background

state.

Initially, tower measurements were averaged over the

same 8-d time window as the MODIS measurements.7 http://flux.aos.wisc.edu/data/cheas/wcreek/flux/
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The ED2 prediction is always for the day in the middle

of the MODIS and tower averaging time window.

Based initial results, we observed that phenological

events caused rapid changes in LAI values, especially

during the spring leaf-out. To assess whether more

frequent observations would improve our ability to

capture these transitions, the state data assimilation was

repeated with tower measurements averaged over 4-d

intervals instead of 8-d intervals. As the MODIS

observations used here come from a data product,

similar tightening of the time window could not be done

with them. The reduced measurement window length

consequently increases the tower LAI uncertainty by

approximately a factor of square root of 2 as the average

was calculated over a smaller sample size, though the

exact error estimate depends upon the number of

observations meeting QAQC and their magnitude

according to Eq. 4.

To determine how changes in the leaf-phenological

state affected the carbon, we calculated daily average

net ecosystem exchange (NEE). The flux tower NEE

measurements (LI-6262, LI-COR, Lincoln, Nebraska,

USA) are at half-hour intervals and were averaged

from gap-filled measurements over the day if more than

25% of the raw observations for that day were

available. Both the estimated and modeled NEE were

calculated from the ED2 gross primary production

(GPP) minus the sum of the autotrophic and hetero-

trophic respiration fluxes. The NEE estimate was

averaged from the NEEs of individual ensemble

members.

RESULTS

Observed tower and MODIS LAI values differed in

magnitude and were not fully synchronized in their

phenological dynamics (Fig. 1). During spring leaf-out,

tower LAI tended to lag behind MODIS LAI by about 7

d. During fall leaf senescence, MODIS LAI declines

sooner but slower than tower LAI, although in both

cases the most rapid change in the value occurs around

the same date. Across the summer there appears no

systematic difference between their values. The modeled

LAI, though, has a higher peak LAI than observations.

During early spring and late fall, MODIS LAI is notably

higher than any of the other LAIs.

Springtime modeled LAI increases around the same

time as MODIS LAI, preceding both tower and

estimated LAI. Modeled leaf-out occurs at a faster rate

(greater slope) toward the end of spring, while both

observations decelerate after the initial jump in value,

which causes modeled LAI to peaks sooner than

observed LAIs. After data assimilation, estimated LAI

generally shows a small initial increase preceding tower

observations of leaf-out, but successfully predicts the

timing of the main leaf flush, splitting the difference

between the observations. The rate of change for

estimated LAI also slows towards the end of spring in

accordance with the observations. Overall, the estimated

FIG. 1. Leaf area index (LAI) as observed by moderate resolution imaging spectrometer (MODIS; circles), as well as the flux
tower (triangles) with an 8-d measurement window, as predicted by the model (dashed red line) and as estimated by data
assimilation research testbed (DART; solid blue line) for years 2002–2005. Values are means 6 SD. The state estimate uncertainty
is presented by the blue shading. Panels (A–D) are for spring leaf-out and panels (E–H) for fall senescence.
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LAI matches the observed end of leaf out better than the

model alone.

During fall, modeled LAI generally begins to decrease

abruptly, similar to tower LAI, although modeled LAI

lacks the long tail of tower LAI and differs in timing of

the main leaf senescence. In contrast, estimated LAI has

a longer, slower decrease before a faster drop in value

after approximately day of year 270 similar to MODIS

LAI. Estimated LAI predicts the timing of the large

decrease as observed by both MODIS and the tower

better than modeled LAI. With the exception of 2005,

the MODIS and the tower observations show notable

differences in timing, but the estimated LAI is generally

a compromise between them. In 2005, the MODIS and

tower LAIs are close to each other both in value and

phase.

In addition to estimating state variables LAI and

GLF, the assimilation also constrained the parameter a,

which approximates the timing of the midpoint for leaf

on and for leaf off (Fig. 2). It is important to note that a

has a different value in the spring than in the fall. During

both spring and fall, the ensemble mean of a initially

changes rapidly with the ensemble spread simultaneous-

ly decreasing. Eventually, though, all ensemble members

for a year converge to around the same static mean a

with the spread reducing from ;8 d to ;2 d. According

to these results, the state estimate initially changes the

leaf-out date considerably until most ensemble members

settle around the same date. However, at this point the

relative spread for GLF (not shown for clarity) has

grown in value and maintains the LAI spread. Finally,

since GLF cannot be larger than 1 or smaller than 0, the

GLF ensemble values converge at the end of each

phenological transition. As LAI is calculated from GLF,

this results in consequent convergence of ensemble

members.

Notably the pattern of evolution of a differs during

the spring and the fall. During leaf-out, the ensemble

mean for a always decreases from the initial mean. This

suggests that the default parameter values used in the

spring were biased toward too early leaf out, which is

seen in Fig. 1. In contrast, during the fall senescence, the

mean of a remains within the same, narrow range at the

beginning and at the end, but varies greatly over the fall

instead of plateauing quickly to a certain value. Thus the

state estimate and the fitted parameters roughly agree on

the period of time when the fall senescence occurs.

Additionally, a generally becomes static after about 20

days in the spring compared to the approximately 40

days it takes in the fall.

Reducing the length of the tower averaging window

increases both the temporal variability and measure-

ment uncertainty in tower LAI, which is especially

obvious at the beginning of the fall senescence (Fig. 3).

LAI estimates from more frequent assimilation are

more variable and have a larger ensemble spread than

the less frequently estimated LAI. On the whole, when

using the shorter averaging time window, the estimated

LAI is generally closer to tower LAI than when using a

longer averaging time window. Using more frequent

tower observations, the relative uncertainty for a is

generally ;1% smaller at the end of spring and ;0.4%
smaller at the end of fall than with less frequent tower

observations (Fig. 4).

To determine how the state assimilation affected

ecosystem carbon fluxes, daily average NEE was

compared both to the ED2 model simulation and to

the flux tower observations (Fig. 5). Adjusting LAI, and

FIG. 2. The evolution of half-saturation parameter a as estimated by DART for years 2002–2005. The flux tower observations
were averaged over an 8-d measurement window. Panels (A–C) are the ensemble means for each year. Panels (B and D) show
relative uncertainty, calculated as the ensemble spreads (standard deviation of a) divided by the ensemble mean (mean a) for each
year. Panels (A and B) are for spring leaf-out and panels (C and D) are for fall senescence.
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consequently GLF, influenced the estimated NEE,

especially in the spring and fall. During spring,

estimated NEE increased before modeled or observed

NEE, even though estimated LAI increased later in the

spring than the modelled LAI. The early increase in

NEE was observed to be due to an increase in gross

primary production (GPP) at low LAI rather than a

decrease in ecosystem respiration (Re; figure not

shown). However, later in the spring and at the

beginning of summer, the estimated NEE is closer to

the observed values than the modeled NEE. In the fall,

there is no clear difference between how estimated and

modeled NEE perform compared to the observed

values.

DISCUSSION

This study had four objectives: (1) provide a proof-of-

concept for the operational assimilation of phenological

data, (2) identify and isolate issues that need to be

addressed before full implementation of data assimila-

tion in such a system is possible, (3) determine whether

all observations of LAI can be treated as similar, and (4)

find out if state data assimilation is preferable for

phenological systems to methods that focus solely on

FIG. 4. The evolution of half-saturation parameter a as estimated by DART for years 2002–2005. The flux tower observations
were averaged over 4-day measurement window. In the upper panels are the ensemble means for each year. Panels (B and D) show
relative uncertainty, calculated as the ensemble spreads (standard deviation of a) divided by the ensemble mean (mean a) for each
year. The left (right) panels are for spring leaf-out (fall senescence).

FIG. 3. LAI as observed by MODIS (circles), as well as the flux tower (triangles) with a 4-d measurement window, as predicted
by the model (dashed red line) and as estimated by DART (solid blue line) for years 2002–2005. Values are means 6 SD. The state
estimate uncertainty is presented by the blue shading. Panels (A–D) are for spring leaf-out and panels (E–H) for fall senescence.
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parameters. The first and last objectives were addressed

by the analysis of results, as they demonstrate that data

assimilation produced estimates of LAI closer to

observed LAI than modeling alone, illustrating the

utility of data assimilation in accounting for the

numerous factors affecting leaf phenology. Especially

in the fall, the noise in both estimated state variables and

parameters indicates that fall phenology is difficult to

predict without actively incorporating information from

observations. By contrast, for spring leaf-out, the largest

source of uncertainty is the initial bud-burst, but with a

correct choice of parameters, the leaf expansion phase

appears more predictable even without assimilating

input from observations. This is understandable, as

spring leaf-out is a continuous process of growth after

the initial bud-burst, but fall leaf senescence is influenced

by many environmental factors resulting in noncontin-

uous decrease in LAI.

During spring, estimated LAI reached maximum

value at least 7 d later than the modeled LAI. In the

fall, there is no constant timing or rate difference

between modeled and estimated LAI, but there is a clear

difference between modeled and estimated LAI evolu-

tion, and hence the phenological phase. Thus state data

assimilation can be expected to improve accurate carbon

cycle modeling, which is affected by the phenological

changes (Richardson et al. 2010). However, when

examining NEE, neither the modeled nor estimated

NEE was clearly closer to the observed NEE values.

This indicates that the midgrowing-season NEE in the

model should be improved, as it appears to be insensitive

to phenology. However, it should be stressed that even

in this case, the estimated approach produced similar

results to a model tuned specifically for those years and

that location.

These results are encouraging for future data assim-

ilation projects and show the benefit of assimilating

multiple different observations when estimating the

state. The results, however, also raise several points to

consider when moving forward with using state data

assimilation in this field.

Observations of the same variable do not necessarily

represent the same process

One of our core questions was whether LAI measure-

ments from different instruments can be compared

directly. When comparing the spring and fall phenolog-

ical events in different years, there are notable differ-

ences in timing and magnitude between the two data

types. In the spring, tower measurements generally show

leaf-out starting about a week later than the MODIS

observations. The MODIS leaf-out preceding flux tower

leaf-out in the spring has been noted before at different

sites and is currently unexplained, although it is

speculated to be due to the averaging window used by

MODIS (Ahl et al. 2006). In contrast, during fall

senescence, MODIS measurements show a slow decline

preceding a sharp drop unlike the sudden decline in most

tower measurements.

MODIS LAI is determined from differences in

reflected radiation in different spectral bands, while

tower LAI is calculated from intercepting biomass

between the two PAR sensors. Due to these differences,

when the leaves begin to change color, the MODIS

product will cause a change in LAI, while the tower

measurements will not show a large change in transmis-

sion since the leaves still intercept light. This does not,

however, reduce the effectiveness of incorporating

different observations, especially since all available

measurements are derived observations. Rather, it

indicates that the estimate would be further improved

by using a model that would simultaneously provide

separate predictions for leaf expansion and drop vs.

changes in leaf color, corresponding to the different

observations. Neither alone is the correct definition of

LAI, since physiological processes drive photosynthesis

and transpiration, while the physical presence of leaves

drives canopy turbulence, soil temperature, and evapo-

transpiration.

Representativeness of the model and the observations

For the purposes of this study, we assumed that all

model predictions and observations were of the same

forest composition. This is not strictly true, as the

MODIS pixel is much larger than the inventoried area of

the flux tower footprint, which is in turn larger than the

view field of the PAR sensor mounted on the tower

itself. For example, the larger MODIS preleaf-out LAI

indicates the presence of conifers in the MODIS pixel

that are not observed in the flux tower footprint.

Additionally, the approach used by ED2 to calculate

the LAI from the inventoried forest composition

contains its own inherent sampling uncertainty, uncer-

tainty in the allometric parameters, and process error in

assuming a static allometry and one-dimensional radi-

ative transfer rather than a dynamic response to the light

environment (e.g., light-foraging and self-shading).

Likewise, the tower measurements are made at a single

point, which may differ in magnitude and timing of LAI

compared to the rest of the forest. For these reasons,

although the forest composition used for the model is

based on measurements made around the flux tower,

ED2 can still overestimate/underestimate the maximum

LAI when compared to tower or MODIS measure-

ments. This would result in a bias between predictions

and observations and could cause unrealistic state and

parameter estimations. For example, if the model were

to overestimate LAI, then state data assimilation would

prevent full leaf-out in order to keep predicted LAI at a

lower value.

These results show the importance of correct spatial

scale when applying data assimilation. Data assimilation

readily lends itself to integrating data from widely

varying scales that would otherwise be difficult to

combine. However, the choice of model is an important

TONI VISKARI ET AL.554 Ecological Applications
Vol. 25, No. 2



component of this process. For example, ED2 can

simultaneously represent multiple resolutions in the

model output. Future research will simultaneously

determine the modeled LAI corresponding to the larger

area observed by MODIS, as well as the smaller patch

observed by the flux tower. This approach will need to

deal with the additional complexities of resolving

multiple representations of LAI in the state vector.

The impact of increased spatial scale on the LAI

estimation

The model was used to estimate LAI at a single site

using observations assumed to be representative of that

site. Future efforts will simultaneously estimate the state

over a larger spatial area (hundreds of kilometers). A

regional approach should benefit the state estimate at a

single site, as it will be further constrained by the

information from nearby sites (Desai 2010). Before

doing this, though, additional work will be required to

determine the spatial covariance of phenological pat-

terns, how to best represent the dependencies between

different plant types at different sites, and how to

accurately include the impact of the terrain heterogene-

ity. Still, regional coherence in phenological patterns is

robust in most areas (Zhang et al. 2006) given the spatial

patterns of climate variability, implying that spatial

multisite assimilation would specifically benefit pheno-

logical assimilation.

Improving phenological modeling

The phenological model used here is a modified

version of a very simple day-of-year model. This limits

the state estimate, especially at the beginning and at the

end of a phenological event. A number of other

phenological models exist in the literature that are

based on climate or growing degree days (Melaas et al.

2013), but to our knowledge there is an absence of true

dynamical phenological models. We envision an ap-

proach that separates the initiation of phenological state

change from the rate of that change. The former should

be switched from a deterministic, threshold-based

trigger to a probabilistic hazard model approach (Lin

and Zhu 2012), enabling the day by day estimation of

the probability of change conditional on not having yet

switched states. Further improvements in modeling

phenology will naturally also improve state estimation.

Implementing state data assimilation concurrently with

new model development would be beneficial by allowing

testing of how different choices impact the predictions.

Based on our results, it appears feasible that a more

detailed phenological model of spring leaf-out could

efficiently predict the phenological phase if the initial

budburst is correctly timed from observations. However,

the fall senescence is influenced by so many factors that

it is unlikely that even a more developed phenological

model would need continuous observations at least

every 8 d to accurately predict the phenological state.

Impact of frequent/sparse observations

Phenological events tend to be rapid, especially spring

leaf-out. Thus it is natural to question whether 8-d

observation periods are too long, especially since LAI

can change greatly within that time period (Elmore et al.

2012). More frequent observations might create a more

continuous, and possibly realistic, state estimate.

While more observations have clear benefits for the

state estimate, it is also important to understand that

assimilating asynchronous and/or asymmetric observa-

tions can have unintended consequences. When com-

paring Figs. 2 and 4, it is clear that using more frequent

FIG. 5. Net ecosystem exchange (NEE) as estimated by DART (solid blue line), as predicted by the model (dashed green line)
and as observed by flux tower (dotted red line) for years 2002–2005.
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observations, and thus updating the state estimate more

often, allowed the tower measurements have a larger
impact on the state estimate despite the absence of any a

priori reason to trust one data source over the other.
However, as a consequence, less frequent satellite

measurements have a reduced impact on state estimate.
Future data assimilation efforts should consider keeping
all data sources binned to the same frequency or risk

artificially inflating reliance on a single data source.
Additionally, increasing the frequency of the tower

measurements also often increases the observation noise
as can be seen when comparing Figs. 2 and 4. Thus when

determining the frequency of the assimilated observa-
tions, it is important to weigh in these factors as well.

Another factor to consider when deciding frequency
of included observations is how doing so affects

simultaneous parameter data assimilation. In state data
assimilation, during each observation update, state

variable uncertainties are reduced. For dynamic vari-
ables, such as the leaf elongation, uncertainty will

increase through time. For static parameters, though,
each observation update will further reduce their

uncertainty. Thus, they will converge to a certain value
sooner, which can be harmful for the prediction if they

converge too soon. This can be seen especially in the fall,
where, with the exception of 2004, the relative uncer-
tainties decrease faster with more frequent observations.

Our results demonstrate the utility of data assimila-

tion for producing robust model estimates of LAI by
incorporating multiple sources of observation and
accounting for numerous environmental factors affect-

ing leaf-phenology. These results can be readily expand-
ed upon by including additional sources of data and

observations at a number of intermediate scales. While
several issues remain to be resolved in future research,

our results demonstrate that state data assimilation is a
valuable tool for modeling and predicting the leaf-

phenological cycle and, consequently, the exchange of
carbon between deciduous forests and the atmosphere.

Shifting toward estimating net ecosystem carbon ex-
change will also improve confidence evaluation for data

assimilation as with NEE it is easier to examine the
cumulative effects of different ecosystem carbon fluxes.

Beyond phenology, state data assimilation could also be
applied to other ecological problems, such as satellite

data algorithms like those used in MODIS, which
produces time-series observations of the state. The use
of data assimilation would allow us to include the effects

of state evolution in this process and thus potentially
improve predictive ecosystem models.
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