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Abstract Regional and global models of the terrestrial

biosphere depend critically on models of photosynthesis

when predicting impacts of global change. This paper

focuses on identifying the primary data needs of these

models, what scales drive uncertainty, and how to improve

measurements. Overall, there is a need for an open, cross-

discipline database on leaf-level photosynthesis in general,

and response curves in particular. The parameters in pho-

tosynthetic models are not constant through time, space, or

canopy position but there is a need for a better under-

standing of whether relationships with drivers, such as leaf

nitrogen, are themselves scale dependent. Across time

scales, as ecosystem models become more sophisticated in

their representations of succession they needs to be able to

approximate sunfleck responses to capture understory

growth and survival. At both high and low latitudes, pho-

tosynthetic data are inadequate in general and there is a

particular need to better understand thermal acclimation.

Simple models of acclimation suggest that shifts in optimal

temperature are important. However, there is little advan-

tage to synoptic-scale responses and circadian rhythms

may be more beneficial than acclimation over shorter

timescales. At high latitudes, there is a need for a better

understanding of low-temperature photosynthetic limits,

while at low latitudes the need is for a better understanding

of phosphorus limitations on photosynthesis. In terms of

sampling, measuring multivariate photosynthetic response

surfaces are potentially more efficient and more accurate

than traditional univariate response curves. Finally, there is

a need for greater community involvement in model vali-

dation and model-data synthesis.

Keywords Acclimation � Database � Ecosystem model �
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Introduction

Global change is having numerous impacts on the global

carbon cycle. This is not just limited to the impacts of

elevated CO2 and climate change, but involves the complex

interactive effects of numerous simultaneous drivers, such

as land use change, fragmentation, invasive competitors

and pathogens, and atmospheric pollutants such as ozone

and acid deposition. Projections of global change impacts

on the carbon cycle at a regional to global scale are cur-

rently made using process-based ecosystem models, since

disentangling and generalizing the multitude of interactions

is beyond direct measurement and experimentation. Pho-

tosynthesis is the engine behind the global carbon cycle,

and thus it is critical that we understand the impacts of

these drivers on gross primary productivity (GPP) as this

will feed forward to impacts on carbon storage. However,

one could easily take the position that we already know

everything we need to know about photosynthesis and we

should worry about other parts of the carbon cycle. This is

a testament to decades of hard work that has not only taken

photosynthesis apart through reductionist experimentation,

but has put it back together again to generate simple

mathematical models with an amazing predictive capacity.

Enzyme kinetic models of photosynthesis, such as the

Farquhar–von Caemmerer–Berry model (FvCB) (Farquhar

et al. 1980, 2001), have been around for over thirty years.

While physiologists continue to refine our understanding of
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photosynthesis, and related processes such as stomatal and

mesophyll conductance, these models are without doubt the

most accurate and mechanistic part of a modern ecosystem

model. Model inter-comparisons have shown that ecosys-

tem models that include an enzyme kinetic approach to

photosynthesis provide more accurate predictions of net

ecosystem exchange (NEE) than other approaches (Sch-

walm et al. 2010; Dietze et al. 2011; Schaefer et al. 2012).

Furthermore, when coupled to models of stomatal con-

ductance, enzyme kinetic models explain how key global

change drivers, such as temperature, CO2, and humidity,

affect GPP. Extensions of these models also exist that

account for the effects of other global change drivers, such

as ozone, on photosynthesis (Reich 1987; Sitch et al. 2007).

Other extensions also account for isotopic partitioning

(Riley et al. 2002), providing another tracer of ecosystem

carbon and water fluxes.

Despite the apparent success of photosynthesis models,

in this paper, written from the perspective of field ecologist

and ecosystem modeler, I want to touch on a few specific

points that I feel need greater attention from the research

community. This includes in part an assessment of which

avenues of photosynthesis research are most pressing from

an ecosystem modeling perspective. It is also an assess-

ment of where we need a better exchange of knowledge

and data, in both directions, between modelers and

empiricists, and a greater engagement in the model-data

synthesis process. Specifically, my objective is to address

the following questions:

1. What are the remaining data needs required to

parameterize photosynthetic models at regional to

global scales?

2. What scales are driving uncertainty?

3. What’s the most efficient way to get this information?

What are the data needs for ecosystem models?

In discussing the data needs of ecosystem models, I will

focus on models that employ an enzyme kinetic approach

to modeling photosynthesis as it is both more mechanistic

and more accurate (Schwalm et al. 2010; Dietze et al.

2011). First off, uncertainty analyses demonstrate that

when starting from scratch, modeling a new species or

functional group, that photosynthetic parameters such as

Vcmax (maximum velocity of carboxylase) are among the

most important parameters in an ecosystem model to

constrain (LeBauer et al. 2012). However, despite the high

sensitivity to these parameters (Booth et al. 2012), the

volume and quality of data available frequently results in

low uncertainties leading these parameters to drop in

importance relative to other parameters in ecosystem

models (LeBauer et al. 2012). This low importance of

photosynthetic parameters should be viewed as a

resounding success of photosynthesis research in generat-

ing accurate models and high quality measurements. That

said, beyond Vcmax, Jmax (rate of RuBP regeneration), and

quantum efficiency, many of the other parameters in FvCB

have substantially lower data coverage (Ziehn et al. 2011)

and are frequently assumed by modelers to be constant. In

addition, model inter-comparison has demonstrated that

there are nonetheless significant errors and biases in current

predictions of GPP (Schaefer et al. 2012). The simplest of

these errors to correct is that models tend to underestimate

maximum GPP (Schaefer et al. 2012), which is related to

the fact that models do not take full advantage of the

wealth of data that has been collected due to the lack of

databases, an issue that will be discussed in detail below.

Furthermore, the under-prediction results from the fact

that, for reasons of scaling, models generally use canopy-

level values of Vcmax that are lower than those observed at

the leaf-level (Bonan et al. 2012).

While models underestimate peak GPP, they tend to

overestimate photosynthetic rates in the fall, winter, and

spring (Schaefer et al. 2012). These errors currently appear

to have less to do with an incorrect temperature scaling

(Bernacchi et al. 2009), and are more driven by a failure to

shutdown photosynthesis at temperatures around freezing.

Indeed, there is far less data available on photosynthetic

responses near freezing (Starr and Oberbauer 2003) than at

ambient or high temperatures, though there also remains a

good bit of uncertainty about high temperature photosyn-

thesis (Kattge and Knorr 2007; Smith and Dukes 2013).

Low-temperature photosynthetic responses are particularly

important for evergreen vegetation and for biomes, such as

the tundra, where the mean annual temperature is below

freezing and low temperatures are not uncommon in the

growing season (Davidson 2012). Finally, the other con-

sistent GPP bias across ecosystem models is an overpre-

diction under dry conditions in response to drought and

humidity stress (Schaefer et al. 2012). These responses are

not driven by photosynthesis itself, but rather by direct

stomatal responses to the atmosphere and indirect respon-

ses due to hydraulic limitation. I will not focus on them

further other than to note that while volumes have been

written on both stomatal regulation and plant hydraulics

there remains a strong need for additional research and

better models (De Kauwe et al. 2013). These responses are

of particular importance in climate change feedbacks

across the full moisture gradient from rainforests to deserts

(Berry et al. 2010).

In addition to the need to understand low-temperature

photosynthesis at high latitudes, it almost goes without

saying that we simply need more data at low latitudes.

Sampling across tropical biomes is disproportionately
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small relative to both the magnitude of carbon fluxes and

the diversity of species. These issues are exacerbated even

further as we begin to utilize models that account for

successional dynamics, as these models currently use a

larger number of plant functional types to describe northern

hardwood forests (Medvigy et al. 2009) than they do to

describe tropical rainforests (Moorcroft et al. 2001). This is

purely a reflection of data limitation. In addition, as will be

discussed below, issues of multiple nutrient limitations on

photosynthesis are greater in these biomes and currently

not dealt with by most ecosystem models. Our under-

standing of responses to elevated CO2 are likewise inade-

quate in both the tropics and at high latitudes (Leakey et al.

2012).

So far we have treated photosynthetic parameters in

ecosystem models as if they are fixed constants with a

temperature scaling, as indeed this is how many ecosystem

models represent photosynthesis. However, there is ample

evidence that these parameters are not fixed but vary across

a multitude of spatial, temporal, and phylogenetic scales.

One of the strongest factors driving variability in photo-

synthesis is leaf nitrogen, as Rubisco alone makes up

around half of a leave’s protein (Ellis 1979). Relationships

between leaf N and Vcmax exist in most models, either

explicitly as a term that dynamically varies Vcmax with leaf

N (Bonan et al. 2011), or implicitly due to across species

trade-offs (Wright et al. 2004). Global syntheses not sur-

prisingly demonstrate lower uncertainty in the N–Vcmax

relationship across the temperate biomes, due to signifi-

cantly higher sample sizes, while the tropics, grasslands,

and shrublands are more uncertain (Kattge et al. 2009).

More interesting, they demonstrate a much shallower

relationship on tropical oxisols, suggesting P limitation

(Kattge et al. 2009) and a need to improve models that

consider multiple nutrient limitation (Harpole et al. 2011;

Wang et al. 2010; Goll et al. 2012). While there has not yet

been a formal partitioning of uncertainty in these rela-

tionships, the other thing that is noteworthy is that despite a

notable amount of scatter it appears that within-PFT vari-

ability in nitrogen dominates the variability in PFT-level

estimates of Vcmax (Kattge et al. 2009, Fig. 2, Feng and

Dietze in review). However, it is important to note that this

statement does not tell us on what scale this variability

occurs. For example, most ecosystem models with dynamic

N feedbacks will use relationships such as these to allow

for within-PFT variability in response to differences in

N-uptake across space and time. However, it is also true

that much of this within-PFT variability in foliar traits may

be due to differences among the species that make up a

PFT (Townsend et al. 2008), which are ignored in most

ecosystem models. Within a site, there is also considerable

variability in leaf traits associated with canopy position,

leaf age, and responses to stress, damage, and thermal

acclimation. However, it is not a priori obvious that across-

species relationships can be used to drive variability across

space, time, age, canopy position, etc., or that the rela-

tionships are the same for each of these effects. It would

obviously be a great boon to modelers if these relationships

were scale invariant, but this has yet to be demonstrated

rigorously. These ideas are revisited in the second section

‘‘What scales are driving uncertainty?’’.

Addressing the data needs of models requires the col-

lection of new data, but even more than this it requires that

we do better job at making existing data open and orga-

nized. I believe that the plant biology research community

as a whole would benefit considerably from an open

database project to archive data on leaf-level gas exchange

and photosynthesis. Even if we ignore the needs of eco-

system models, there are many clear examples, from

GenBank to FLUXNET, where the construction of dat-

abases have enabled new and creative syntheses that were

previously unimaginable and well beyond the initial con-

cept of the original architects of these databases. Leaf-level

data are uniquely suited for such a database as it is relevant

across the full range of the scales of organization in plant

biology, from the gene to the global biosphere. Gas

exchange is one of the few places in plant biology where a

global scale modeler and an Arabidopsis geneticist can find

overlap in the data of interest and the methods used for data

collection and analysis. Both parties can, for example, find

common cause in the task of keeping a LI-6400 running

smoothly. There is growing interest from the community in

connecting data across this full range of scales of organi-

zation (Neale et al. 2010), but leaf-level physiology rep-

resents a gap in cyberinfrastructure between the molecular

and ecological. For example, the iPlant Tree Biology project

recently launched CartograTree (http://dendrome.ucdavis.

edu/cartogratree/), a meta-database that allows spatial que-

ries of databases on trees across scales from the genome to

the ecosystem (Vasquez-Gross in review). However, the

only leaf-level data currently in CartograTree are summary

statistics from the TRY-DB (http://try-db.org) trait database

(Kattge et al. 2011). Work with summary statistics on

photosynthetic traits has admittedly been very useful for

parameterizing ecosystem models (Kattge et al. 2009; Bonan

et al. 2012), but this approach is inherently limited when

new analytical methods are developed (Patrick et al. 2009;

Feng and Dietze in review) or when models are refined

(Bernacchi et al. 2009; Medlyn et al. 2011). Only by

archiving the raw measurements can the data be re-analyzed

using consistent approaches as models evolve. Furthermore,

summary data and the literature meta-analyses are tedious to

compile and generally lack information on important

covariates, such as vapor pressure deficit (VPD). Decades of

raw data are in danger of being lost if archives are not

developed.
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Another key point in favor of database construction is

that leaf-level gas exchange measurements currently ben-

efit from a remarkable degree of uniformity in data formats

and measurement technologies. We are long past the days

when labs had to construct their own measurement systems

and current research is overwhelmingly done using

instrumentation from a handful of companies (LI-COR, PP

Systems, ADC BioScientific, CDI Bio-Science). The ben-

efit of this uniformity is that cyberinfrastructure need only

deal with a small number of file formats and the required

meta-data is simplified. The creation of such databases will

allow this data to be mined and manipulated in novel ways

(Hey et al. 2009). In addition, the diversity of possible

covariates and applications suggests that database inter-

operability be a key goal, so that gas exchange data can be

easily linked to data on genomes, gene expression, plant

traits, spectroscopy, flux towers, etc. Furthermore, funding

agencies are increasingly requiring that data be publicly

archived, but existing database options do not meet these

criteria. The aforementioned TRY-DB database is capable

of storing gas exchange data and parameters estimated

from these data, but is not set up to handle raw gas

exchange files and only a subset of the data is public. The

only gas exchange database I am aware of, the LeafWeb

project (http://leafweb.ornl.gov), is designed to promote a

specific statistical method for fitting A–Ci curves (Gu et al.

2010) and likewise does not currently make data publicly

available. While LeafWeb is set up to ingest raw data, it

places unnecessary and complex formatting requirements

on the data, while at the same time requiring meta-data that

is biased toward observational ecological measurements.

As such, there is no easy way to record experimental

designs or connect these data to ancillary data on the

multitude of other things we have been known to measure

in conjunction with gas exchange, such as microarrays or

spectroscopy. At present, there is not even a requirement

for including the scientific name of the species measured or

a way to archive measurements other than A–Ci curves. It

may be that LeafWeb proves to be an important first start,

and greater interoperability with projects like TRY-DB

could join the strengths of both approaches. However,

regardless of whether it builds upon existing efforts or is an

entirely new project, there is a need for an open database

that the full span of research communities find useful and

can support.

What scales drive uncertainties?

As alluded to in the last section, photosynthetic parameters

can vary across a multitude of scales and in response to a

range of factors. In this section, I provide a perspective on

which scales are likely to be most important for ecosystem

models, and sketch out what these mathematical models

might look like. First, let me reiterate from the previous

sections that no other process in an ecosystem model is as

mechanistic or predictive as enzyme kinetic photosynthe-

sis. Therefore, it is not the calculation of GPP at each

model time step, in response to changes in temperature,

light, and humidity, which drives ecosystem model

uncertainty. Second, there are a number of processes that

affect how photosynthetic models scale in space, first from

the leaf to the canopy, and then from the canopy to the

larger landscape or model grid cell. I will not focus on this

scaling because it has been discussed extensively else-

where, including in this issue (Desai in review), and

because spatial scaling is the motivation behind elegant

models like the ecosystem demography (ED) model

(Moorcroft et al. 2001; Medvigy et al. 2009). I instead want

to focus on other aspects of the scaling problem, and will

instead focus on addressing the question ‘‘What are the

important time scales on which plants adjust their photo-

synthetic parameters?’’ First, at the instantaneous scale, it

bears reminding that enzyme kinetic models are equilib-

rium models not instantaneous models of photosynthesis.

Given the 30–60 min time step of most models, this

equilibrium assumption appears valid; however, this is only

true if the environmental drivers are approximately con-

stant across the time step. Given that the time step was

chosen so that there is little trend in the drivers, this is

probably a safe assumption for the upper canopy. However

this assumption is unlikely to be true in the understory

where the light environment is driven by sunflecks

(Naumburg and Ellsworth 2002). Responses to sunflecks

involve dynamic responses and feedbacks that differ non-

trivially from the square wave response one would predict

from an equilibrium model, and enormously from the

response under the average understory light level (Way and

Pearcy 2012). These dynamics can have a large impact on

understory growth and survival, and can interact with

responses to global change drivers such as CO2 (Leakey

et al. 2002). In many ecosystem models these effects will

have little impact, as the understory contributes little to

total GPP. However for models that include successional

dynamics the growth and survival of the understory plays

an important role in determining the rate and trajectory of

species turn over (e.g., Pacala et al. 1996). The modeling

challenges that remain are in how, within a computation-

ally-efficient canopy radiation model, to approximate the

distribution of sunflecks, and how to approximate a

dynamic photosynthesis model based on the sunfleck dis-

tribution (e.g., Gross et al. 1991) without having to simu-

late the dynamic responses second-by-second. One option

for the latter might be a mixture model between shade and

sunlight conditions with an exponential rate parameter

controlling the transition from one state to the other. Such a
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model may have an approximate solution in the time-

spectral domain using Fourier or Laplace transforms. From

a physiological perspective, there is a need for simple

generalizations of the enzyme kinetic models that account

for these dynamics (e.g., Gross et al. 1991) and data with

which to calibrate these models across a wide range of

biomes.

In considering time scales of variability in photosyn-

thesis, let us next jump to the process of acclimation. By

acclimation, we refer to the change in biochemical and

physiological processes associated with responses to envi-

ronmental conditions that shift instantaneous response

functions. For example, a sustained increase in temperature

will trigger genetic signals that lead to a shift in Vcmax

toward a higher photosynthetic optimum. However, this

longer-term shift in Vcmax falls along a very different

response curve than the instantaneous Arrhenius response to

short-term temperature fluctuations. Smith and Dukes

(2013) recently published a detailed review of photosyn-

thetic acclimation to temperature and CO2, and the repre-

sentation of these processes in ecosystem models, so I will

not repeat that discussion here but will instead touch on a

few points that bear greater scrutiny. First, it is important to

separate the acclimation process into one part addressing

what the new equilibrium parameter will be, and another

part describing the rate at which that equilibrium is reached.

We know more about the equilibrium (Kattge and Knorr

2007), and ultimately this is the more important of the two

parts. It is also worth mentioning that most data on tem-

perature optima document changes in Amax (‘‘photosyn-

thetic assimilation rates measured under high light, ample

soil moisture, and ambient CO2,’’ censu Wright et al. 2004)

not Vcmax, which is not adequate for the purpose of

parameterizing ecosystem models. It is also noteworthy that

the temperature optima for Amax and Vcmax qualitatively

seems to follow a different shape, with the former being

more symmetric and possibly lower in the peak tempera-

ture. This difference may be due the fact that Amax is more

responsive to high temperatures because of the difference in

VPD, which increases rapidly with temperature, as well as

the differences in temperature dependence among other

model parameters, such as Kc, Ko, and C*, and the tem-

perature dependence in leaf respiration (Lin et al. 2012).

Global models that include acclimation find that there is

only a modest overall response from including these

dynamics, but that this is the result of compensating

responses between high and low latitudes, which are each in

the 20 % range and thus represent important processes

(Friend 2010). While Smith and Dukes (2013) claim that

‘‘The absence of long-term plant carbon exchange responses

in most process-based models can no longer be attributed to a

lack of suitable algorithms’’ I feel this view is a bit optimistic.

Of the two models, they present both are, in essence, just

regressions between average temperature and the optimum

temperature for Vcmax and Jmax, and thus provide little

mechanistic understanding of acclimation. One is based on a

single site and an optimization assumption (Friend 2010).

The other is much more robust, based on experimental data

for 36 species, but the species are predominantly temperate

(Kattge and Knorr 2007). There remains a pressing need to

determine if the assumption of linearity holds in polar and

tropical regions, especially since this is where the largest

impact on GPP occurs. Also, the linear model only explains

approximately 40 % of the variability, which means that

there are clearly other processes contributing to variability in

optimum temperature. Indeed, parametric uncertainty asso-

ciated with acclimation was a major driver of uncertainty in a

level–level model of net photosynthesis (Ziehn et al. 2011).

Acclimation is an area ripe for greater exploration across the

scales of organization, as a better understanding of the

genetic and biochemical drivers of acclimation may open the

door for a more mechanistic and general model.

Returning to the question of the rate of acclimation,

different models currently appear to use different time-

scales (e.g., 3, 15, and 30 days) and, to the best of my

knowledge, there is little data behind these choices. In

order to explore these choices let us consider a simple

model of acclimation along the lines of those presented

above. I start from the variant of the FvCB model as

described by Medlyn et al. (2002) using Vcmax = 100 and

the weighted mean value for Ha (64.4). Next, we will apply

the Friend (2010) relationship between leaf temperature

(TL, �C) and ‘‘equilibrium’’ optimal temperature,

Te = 17 ? 0.35 TL. Finally, we need a model to relate the

optimum temperature at any point in time to the current

leaf temperature and the equilibrium temperature. As a

simple starting point consider the simple exponential decay

function dTopt

�
dt ¼ 1=k Te � Topt

� �
. Here k is the time-

scale (units = days) at which the instantaneous optimum

temperature approaches the equilibrium optimum temper-

ature. GPP is then simulated from 1998 to 2006 using

30 min meteorological data from the Willow Creek

Ameriflux tower in a mature hardwood forest in northern

Wisconsin (45� 480N, 90� 050W), that was gap-filled by the

North American Carbon Program (Ricciuto et al. 2009). In

addition to just evaluating the impacts of acclimation, let us

also estimate the costs, as the processes of up- or down-

regulating photosynthesis is undoubtedly associated with

additional metabolic costs of protein synthesis (Amthor

2000). Here, the actual carbon costs of acclimation are

unknown, but are assumed to be proportional to the

cumulative number of degrees that Topt is shifted up and

down. For example, if Topt is shifted one degree up every

morning and one degree down every afternoon the annual

‘‘cost’’ would be 2 9 365 = 730 degrees, while if Topt is
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shifted up 5 degrees in the spring and down 5 degrees in the

fall then the annual ‘‘cost’’ would be 10 degrees. Figure 1a

shows the impact of choosing different timescales (pre-

sented on a log axis) on the GPP of the site compared to the

GPP calculated without acclimation. The absolute units for

the cost curve in Fig. 1a are not directly comparable to the

carbon benefits of acclimation, thus we cannot perform a

cost-benefit analysis, but this still provides a relative metric

of the costs of acclimation. From this simple theoretical

exercise, we learn a number of interesting things. First is

that GPP is maximized when acclimation occurs at a sub-

daily timescale. However, if we look at the estimate of Topt

when k = 0.2 days in Fig. 1b we see that, compared to air

temperature, the optimum temperature lags the diurnal

cycle. GPP would thus actually be maximized if plants

could anticipate the diurnal cycle ahead of time rather than

responding to it using an acclimation response. In other

words, from a theoretical perspective, circadian rhythms

could have a larger impact on GPP than acclimation. There

is evidence for circadian cycles in plants at the molecular

levels (Harmer 2009), at the leaf photosynthetic level

(Hennessey and Field 1991), as well as at the ecosystem

level (Dios et al. 2012). However, it remains unclear how

important circadian rhythms are to photosynthesis under

field conditions (Williams and Gorton 1998), nor are these

effects incorporated into current ecosystem models. The

second thing we learn from this simple model is that the GPP

response is fairly flat over a span of timescales from *3 to

*45 days. This means that there is little benefit gained from

faster acclimation within this range, and indeed GPP is

slightly lower at the faster timescale. In practical terms, this

means there is little benefit to try to acclimate to synoptic-

scale weather patterns, as a plant is just as likely to find itself,

at the end of a weather front, disacclimated to the new con-

ditions as it is to benefit from such acclimation (Fig. 1b, c). It

is also possible that failing to include acclimation responses

plays a role in the progressively larger errors in ecosystem

models at timescales beyond the synoptic (Dietze et al.

2011). From this simple model, we also learn that the

apparently arbitrary choice of timescale in previous studies is

unlikely to have had a large impact on results, as the values in

use are in this flat region. That said, it is still important to

make measurements that document the temporal dynamics

of acclimation responses as this simple model may not hold

in practice. For example, one could impose a large step

change in temperature and then record the daily changes in

photosynthetic parameters and Topt.

Moving to the next time scale, feedbacks through

resources occur across a range of scales. As discussed earlier,

relationships between photosynthetic parameters and

Fig. 1 Timescales of photosynthetic acclimation, Willow Creek

Ameriflux Tower, WI. Top allowing for the acclimation of the

optimal temperature for photosynthesis increases GPP (unitless,

expressed relative to a model without acclimation) regardless of the

timescale at which acclimation occurs, but GPP is maximized at a

subdaily timescale. GPP is relatively insensitive to acclimation over a

range from 45 days down to 3 days (vertical dotted line, value from

Friend 2010). The ‘‘cost’’ of acclimation, expressed in terms of the

cumulative degrees of acclimation applied to Topt, declines rapidly as

timescale increases (values on log scale) suggesting that there is little

benefit gained from acclimating to synoptic-scale variation. Middle
comparison between air temperature (Tair, black) and the optimal

photosynthetic temperature (Topt) at different timescales (red = 0.2 -

days, green = 2.8 days, blue = 43 days) during peak summer dem-

onstrates the strong benefit of acclimation at the intermediate time

scales. The Topt in the model without acclimation is denoted

‘‘Default’’ (cyan). Subdaily acclimation lags observed temperatures,

suggesting that processes such as the circadian rhythm that anticipate
the diurnal cycle are likely to provide a greater net benefit than

acclimation processes that respond to the environment. Bottom same

comparison between Tair and optimal temperature as middle panel

but over a full year
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resources, especially nitrogen, play an important role in

many ecosystem models. One of the important empirical

questions that need be resolved is whether there is a degree of

‘‘universality’’ to these relationships or whether they are

scale dependent. For example, are the across-species rela-

tionships between Vcmax and N discussed earlier (Kattge et al.

2009), equivalent to the within-species relationships? There

is evidence to suggest not, but rather that species vary in their

inherent nitrogen use efficiency based on life history and

depending upon environment, meaning that the within-spe-

cies slope of this line differs from the slope of the across-

species relationship (Feng and Dietze in review). This dif-

ference is important because it means that if a model employs

the across-species relationship to estimate Vcmax from N then

the response to nitrogen deposition or fertilization would be

incorrect because the response is driven by the within-spe-

cies relationship. However, even here the response depends

upon time scale, as on a longer time scale the change in

resources will drive a community shift in species composi-

tion rather than a phenotypic shift in foliar chemistry. Even

when addressing the within-species relationship, it is not yet

clear whether a single relationship drives different responses

on different scales. For example, is the relationship between

Vcmax and N associated with a change in light environment

along a canopy profile the same as the relationship associated

with leaf aging, and is either the same as the relationship

governing the response to nitrogen additions? Also, what is

the relative importance of each of these processes? In our

own work in grasslands we find that, across many species and

functional groups, variations in foliar N account for most of

the variation in Vcmax throughout the growing season (Feng

and Dietze, in review). We also show that this seasonal

variability associated with leaf aging has a larger impact on

estimated GPP than the effects of canopy position (Wang

et al. 2012). This is noteworthy because far more ecosystem

models include the effects of canopy position than include

leaf aging. Finally, induced foliar responses to damage and

herbivory are likely to drive yet another different Vcmax–N

relationship than age, canopy position, or fertilization,

because nitrogen may be allocated away from photosyn-

thesis and into defense compounds. The challenge is that

models require generality, and if we end up with scores of

different Vcmax–N relationships then large-scale models will

be paralyzed unless there are general mechanisms that

explain these responses. In fact, one of the most critical

benefits that molecular, genetic, and physiological plant

biologists can provide to global ecology is this type of

quantitative understanding of general mechanisms that

allows modelers to see above the Sisyphean task of devel-

oping statistical relationships for a quarter billion different

plant species. Also related is a need to improve models to

predict foliar nitrogen, as a flawless Vcmax–N relationship is

of limited value if N is unconstrained.

The final time scale that I want to touch on is that of

succession. This time scale is often overlooked by modelers

and physiologists alike; however, it is important to remember

that the responses to climate change will play out over cen-

turies and that on these time scales it is the community

processes of growth, mortality, dispersal, recruitment, and

disturbance that shape ecosystems. Despite many textbook

examples of successional processes being orderly and pre-

dictable, reality tends to be more complex and dependent

upon both current and historical conditions (Foster et al.

2003; Dietze and Clark 2008). On these time scales, the

factors that affect understory survival, such as photosyn-

thesis at low light, sunfleck utilization, and the coupling

between photosynthate production, respiration and alloca-

tion, can play a role in determining long-term dynamics that

is disproportionate to the amount of carbon fixed by these

plants (e.g., Pacala et al. 1996). It is also important to

remember that because succession plays out over long time

scales, land use history plays an important role in deter-

mining the current state and trajectory (Foster and Aber

2006; Albani et al. 2006). For example, many of the forests in

the eastern U.S. are still recovering from logging and agri-

culture that occurred in the 1800s and early 1900s, which

predicts a continuing shift to later successional species that

have lower maximum photosynthetic rates and deeper can-

opies (Albani et al. 2006). However, past FACE experiments

in this region have all looked at early successional species

and less is known about how mid and late successional

species will respond to elevated CO2, or how shifts in pho-

tosynthetic responses might accelerate or retard successional

trajectories (Mohan et al. 2007). Ironically, photosynthesis

research remains relevant to the issue of land use legacies, as

hyperspectral remote sensing provides a way of connecting

photosynthetic chemistry to species-level mapping (Asner

and Martin 2009).

What is the most efficient approach to sampling?

A common theme of the previous two sections was that,

from the perspective of ecosystem models, one of the

primary interests is in the parameters of enzyme kinetic

models, such as the FvCB C3 model, and how those

parameters vary across different scales, across species, and

in response to different drivers. The effect of this is that

point measurements of Amax are of considerably lower

value to models than response curves, despite the fact that

the former is far simpler, quicker to measure, and often

adequate to address specific research questions. However,

if the goal is to estimate photosynthetic parameters from

gas exchange measurements, then an important question

becomes how to do this most efficiently. Prior statistical

treatments of the FvCB model have focused primarily on
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methods for fitting univariate response curves (Dubois

et al. 2007; Patrick et al. 2009; Gu et al. 2010) and design

has unfortunately been mostly relegated to ‘‘rule of thumb’’

advice (Long and Bernacchi 2003).

One thing common to current measurement approaches

is that they have been focused on sampling traditional

response curves of either CO2 (A–Ci) or light (A–Q) or

both. A reason for this is that there are features of these

curves that are of direct interest to physiologists, though

perhaps a greater factor is that many of the current statis-

tical approaches to parameterization require these univar-

iate curves. However, if we think about using the

parameters of these models to predict GPP, then it is

important to remember that we are not using these two

curves to make predictions but the full response surface

describing net assimilation as a function of light, Ci, and

temperature. Furthermore, in predicting GPP we only use a

specific subspace, not all combinations of light, Ci, and

temperature are observed in the environment. Figure 2

(black dots) shows the modeled projection of light and Ci

values experienced by the top of the canopy at the Willow

Creek tower over nine years as described above. This was

generated using the same parameterization of the FvCB

model but coupled to the (Leuning 1995) stomatal con-

ductance model assuming a stomatal slope of 8 and a ref-

erence VPD of D0 = 1 kpa. Onto this surface, we have

projected the A–Ci (red) and A–Q (purple) response curves

that would typically be run to parameterize this model,

with the points indicating the default measurement values for

the LI-COR 6400 auto-program. A few things can be gleaned

from these plots. The first is that only one point on the whole

A–Ci curve intersects with the space over which the model is

applied. Second, the light response curve (for which we

assumed a typical setting of Ca = 400 ppm) samples a

higher fraction prediction space, and in fact the distribution

of sampled light levels does a better job of approximating the

distribution of observed light levels. It is also obvious that the

light response curve only takes a glancing blow past the

right-hand edge of the prediction space, which is not sur-

prising given that we assumed a CO2 concentration above

that experienced by the leaves. More generally, we see that

predictions with the FvCB model are largely extrapolations

beyond the measurements. We also see that if we want to

explore prediction space then light response curves are much

more valuable than A–Ci curves. Since the goal isn’t strictly

to explore prediction space, but to estimate parameters, there

is still reason for making gas exchange measurements out-

side of this range. However, there is also a strong argument to

be made that two orthogonal transects through Q–Ci space is

not a particularly efficient design for either goal.

To begin to explore the options for different ‘‘space-

filling’’ designs, I compared four simple alternative sam-

pling designs. In all cases, I fit the FvCB model to

simulated data assuming that the FvCB parameterization

described above is the ‘‘true’’ model and that measurement

uncertainty has a standard deviation of 0.1 lmol/m2 s. The

first sampling design is the ‘‘business as usual’’ approach of

running orthogonal A–Ci and A–Q curves, and here we use

the sampling illustrated in Fig. 2B with 11 points on the A–

Ci curve (red) and 9 on the A–Q (purple) for a total sample

size of 20. To keep the comparison simple, we preserve this

Fig. 2 a Predictive space for photosynthesis modeling. Black dots

indicate the observed photosynthetically active radiation (PAR) and

predicted substomatal CO2 concentration (Ci) every half hour for

from 1998 to 2006 at the top of the canopy at the Willow Creek

Ameriflux Tower, WI. The colored dots indicated different sampling

designs over this space: A–Ci curve (red diamonds) A–Q curve

(purple diamonds), extended A–Q cluster (green triangles), Normal-

ized cluster (brown dots). b Full driver space for photosynthesis

modeling. Blue dots indicate an example of a Latin Hypercube design.

All other dots are as in (a): predictive space (black dots), A–Ci curve

(red diamonds), A–Q curve (purple diamonds)
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sample size for all three experiments, though in practice the

greater usefulness of alternative designs would be to reduce

the handling time per leaf. The next two designs we con-

sider focus on the prediction space. The first applies a

k-means cluster analysis to the prediction space in Fig. 2

(green triangles). Because there is much more variability in

light than CO2, this approach results in sampling design

that is very similar to an A–Q curve but with a higher

sampling intensity, so we will refer to this as the ‘‘Exten-

ded A–Q Cluster.’’ In the second design, ‘‘Normalized

Cluster,’’ we again apply cluster analysis, but this time

normalize both PAR and Ci to have a mean of zero and

standard deviation of one (Fig. 2a, brown circles). This

results in a design that fills the predictive space more

evenly. For the final design, we apply a ‘‘Latin Hypercube’’

design to the full Q–Ci space (Fig. 2b, Blue). A latin

hypercube design involves sampling regularly along each

axis, but randomly permuting the order, so that the joint

distribution fills space more evenly than purely random

sampling. For the sequence of twenty light values, we use

the center of each 5 % quantile bin so that the sampling in

proportional to the observed variability in light, which also

means that (like with a traditional A–Q curve) there is more

sampling at low light values than would occur with a

regular sequence of light levels. For the CO2 values, we use

ten points along the ‘‘traditional’’ sequence for an A–Ci

curve, which likewise oversamples low values, but sample

each CO2 level twice (but at different light levels).

Each of the four design’s pseudo-observations were

generated assuming the FvCB model is true but with

Normal observation error (SD = 0.1 lmol/m2 s). All four

were fit using the Bayesian approach described in Feng and

Dietze (in review). This approach uses standard Markov

Chain/Monte Carlo (MCMC) algorithms, as implemented

in JAGS 3.2.0 (http://mcmc-jags.sourceforge.net), but

drops any covariates or random effects since we are only

fitting one leaf. Bayesian MCMC methods involve itera-

tively proposing a new set of parameter values similar to

the current parameter set, evaluating the statistical likeli-

hood that the data were generated under the current

parameter set, and then moving to the new parameter

values with some probability proportional to the likelihood

time the a priori probability of that parameter set. Impor-

tantly, this approach fits all data at once, rather than seg-

menting the data, and the output of the analysis is

probability distribution for each parameter rather than a

single value. Table 1 shows the proportional difference in

the standard deviations of different parameters in the FvCB

model expressed relative to the ‘‘traditional’’ sampling

design of running CO2 and light response curves. All of the

proposed designs do considerably better at estimating the

quantum efficiency (34–44 % reduction in standard devi-

ation) and moderately better at estimating dark respiration

(7–22 % reduction) (Table 1). The alternative designs all

did worse at estimating Jmax (8–58 % increase) with the

latin hypercube design performing considerably worse than

the two cluster designs. This decrease in performance for

Jmax is driven by a reduction in sampling, in all of the

alternative designs, under conditions where Jmax is the

limiting factor. This suggests that alternative designs could

also be constructed to focus sampling on the conditions

where individual terms are well isolated. That said, in this

example, the predictive space was dominated by conditions

that were limited by either quantum efficiency or Vcmax and

thus gives a lower predictive uncertainty. If conditions of

Jmax limitation had been prevalent, both cluster designs

would have increased their sampling of these conditions.

The two cluster based designs also did considerably

better at estimating Vcmax (47–55 % reduction) than the

latin hypercube (16 % increase). Of the two cluster

designs, the ‘‘Extended A–Q Cluster’’ performed better

than the ‘‘Normalized Cluster’’ design for all four vari-

ables. From these results, we can conclude that space-fill-

ing designs as a whole definitely appear promising for

reducing parameter uncertainties, and that more work

would be helpful to flush out these ideas (especially

reducing sampling intensity) and empirically validating

such designs. Surprisingly, the designs that focused on the

prediction space outperformed the design that sampled

more widely, which is encouraging because this also sug-

gests lower predictive uncertainties. It is also encouraging

that the ‘‘Extended A–Q Cluster’’ design had the lowest

uncertainty because it is also the design that is the most

realistic to implement. The other designs involved larger

changes in leaf conditions between measurements, and thus

potentially larger acclimation times between measure-

ments, which obviously partially defeats the purpose of the

alternative designs. This cluster design, in fact, involves

smaller changes between adjacent samples than the tradi-

tional approach, and thus is likely both faster and lower

error than running standard response curves.

Finally, I would like to reiterate that one of the primary

reasons to increase the efficiency of sampling at the single-

leaf scale is to allow an increase in sampling at the across-leaf

scale. At the across-leaf scale, I would like to make a strong

argument for regression-based designs over ANOVA-based

Table 1 Percentage change in FvCB parameter uncertainty for dif-

ferent sampling designs relative to the traditional approach of A-Ci

and A-Q curves. Negative values indicate that a design results in

lower parameter uncertainty for the same sampling intensity

Sampling Design � (%) Vcmax (%) Jmax (%) R (%)

Extended A–Q cluster -44 -55 ?8 -14

Normalized cluster -34 -47 ?21 -7

Latin hypercube -41 16 ?58 -20
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designs whenever practical. The statistical training that most

of us receive places far too much emphasis on replication;

however, response functions have immensely greater value

for modeling and prediction than do discrete treatments. For

the same sampling effort, far greater information is gained

from measuring 1 leaf at each of N levels, whatever the

treatment is, than is gained from measuring N/2 leaves at

each of two treatments. Obviously, a smooth continuum of

treatments is not practical for all experiments, for conceptual

or logistical reasons, and in this case, replication is the only

way to increase power. Nonetheless, we should not hold up

high replication as the gold standard for doing good science.

Finally, as discussed in the preceding sections, it is important

to measure key covariates, such as leaf nitrogen, and to think

critically about the scale dependence of observations.

However, it is equally important to think critically about how

to account for the different sources and scales of uncertainty

in experimental designs and our analyses. Modern statistical

techniques allow for a robust and explicit partitioning of

different types of uncertainty rather than just lumping all

variation into a residual (Clark 2005). Thinking about how

uncertainty is partitioned should not be just for the statisti-

cally obsessive–compulsive, as an understanding of the

patterns of what we don’t know can qualitatively change our

inference (Clark et al. 2007) and help direct future research.

For example, knowing whether the ‘‘residual’’ error in esti-

mates of Vcmax are predominantly across space, across time,

or actually in the observation error changes the hypotheses

about what is driving that variability and how we deal with it.

Throwing all the error in a residual does not tell you whether

you need to sample more frequently, sample more plots, or

design a more precise instrument.

Conclusions

As stated in the introduction, the goal of this paper was to

provide a perspective on the what, when, and how of

improving our understanding of photosynthesis at longer and

larger scales. Our exploration of what are the remaining data

needs, what time scales drive uncertainty (when), and how to

improve measurements took us on a whirlwind tour though

cyberinfrastructure, modeling, and statistics. To briefly

summarize, there is a general need for an open, cross-disci-

pline database on leaf gas exchange. Response curves are

more beneficial to models as they allow the parameterization

of photosynthetic models. Measuring photosynthetic

response surfaces are potentially more efficient and more

accurate than univariate response surfaces. Within photo-

synthetic models, there is a need for a better understanding of

how parameters vary across scales, that the variability in

parameters may be scale dependent, and to determine to what

extent we can generalize these responses rather than relying

on scale-dependent relationships. Understanding responses

across scales is not simply a matter of characterizing the

change in the mean, but also requires a careful consideration

of how uncertainty and variability change across scales. As

we move to models that are better able to address the longer

time scale dynamics of succession, there is ironically a need

to better approximate the instantaneous light responses of

leaves to integrate sunfleck responses essential to understory

growth and survival. Beyond these challenges that apply

globally, there are additional needs focused on specific bi-

omes. At both high and low latitudes, there is a general data

limitation and a particular need to better understand the

relationships between growing temperature and optimal

photosynthetic temperature, as current models of acclima-

tion are largely linear extrapolations from the temperate

region. At high latitudes, there is also a need for studies on

low-temperature photosynthetic limits, while at low latitudes

there is a need for a better understanding of phosphorus

limitations on photosynthesis.

While couched in my perspective as a field ecologist and

modeler, my hope is that these thoughts have provided

fertile ground for synthesis across disciplines as the solu-

tions to many of the problems in global models likely lie as

much in the hands of the ‘‘omics’’ researcher as they do

among those of us who drag our LI-CORs to the far corners

of the world or nurture hundreds of thousands of lines of

computer code to maturity. This need for cross-discipline

fertilization is essential, but the volume of data and the

breadth of scientific understanding are simply too great if

the work of assimilating data into models and evaluating

models is left solely to a small cadre of modelers. To be

successful, it also needs to be paired with a more active

engagement of the research community with the modeling

processes through the development of tools that make

models more accessible and more a part of everyday

research (Dietze et al. 2013).
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