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Abstract 24 

Differentiating C3 and C4 grass pollen in the paleorecord is difficult because of their 25 

morphological similarity. Using a spooling wire microcombustion device interfaced with an 26 

isotope ratio mass spectrometer, Single Pollen Isotope Ratio AnaLysis (SPIRAL) enables 27 

classification of grass pollen as C3 or C4 based upon 
13

C values. To address several limitations 28 

of this novel technique, we expanded an existing SPIRAL training dataset of pollen 
13

C data 29 

from 8 to 31 grass species. For field validation, we analyzed 
13

C of individual grains of grass 30 

pollen from the surface sediments of 15 lakes in Africa and Australia, added these results to a 31 

prior dataset of 10 lakes from North America, and compared C4-pollen abundance in surface 32 

sediments with C4-grass abundance on the surrounding landscape. We also developed and tested 33 

a hierarchical Bayesian model to estimate the relative abundance of C3- and C4-grass pollen in 34 

unknown samples, including an estimation of the likelihood that either pollen type is present in a 35 

sample. The mean (±SD) 
13

C values for the C3 and C4 grasses in the training dataset were -29.6 36 

± 9.5‰ and -13.8 ± 9.5‰, respectively. Across a range of % C4 in samples of known 37 

composition, the average bias of the Bayesian model was <3% for C4 in samples of at least 50 38 

grains, indicating that the model accurately predicted the relative abundance of C4 grass pollen. 39 

The hierarchical framework of the model resulted in less bias than a previous threshold-based 40 

C3/C4 classification method, especially near the high or low extremes of C4 abundance. In 41 

addition, the percent of C4 grass pollen in surface-sediment samples estimated using the model 42 

was strongly related to the abundance of C4 grasses on the landscape (n= 24, p< 0.001, r
2
= 0.65). 43 

These results improve 
13

C-based quantitative reconstructions of grass community composition 44 

in the paleorecord and demonstrate the utility of the Bayesian framework to aid the interpretation 45 

of stable isotope data.  46 
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1. INTRODUCTION 47 

Knowledge of biotic responses to past climatic variability is important for anticipating 48 

future change (Flessa et al., 2005). Fossil pollen assemblages are a valuable indicator of 49 

spatiotemporal variation in plant community composition on the landscape (Williams et al., 50 

2004). However, grass (Poaceae) pollen is typically morphologically indistinct below the family 51 

level (Fægri et al., 1989), rendering pollen analysis a blunt instrument for investigating past 52 

changes in grassland ecosystems. This problem hampers our understanding of the ecology and 53 

evolution of grasslands, which today cover a major portion of Earth’s land surface and regulate 54 

key biogeochemical cycles (Saugier and Roy, 2000).  55 

Carbon isotopic analysis of grass pollen offers an important tool for distinguishing C3 and 56 

C4 grasses in the paleorecord (Amundson et al., 1997; Descolas-Gros and Scholzel, 2007; Nelson 57 

et al., 2006). Recent technical advances include Single Pollen Isotope Ratio AnaLysis (SPIRAL), 58 

which involves the use of a spooling-wire microcombustion device interfaced with an isotope-59 

ratio mass spectrometer (SWiM-IRMS) for the 
13

C analysis of individual grass pollen grains 60 

(Nelson et al., 2007). Nelson et al. (2007) showed that 
13

C values of pollen from known C3 and 61 

C4 grasses could be distinguished based on their distribution around a threshold 
13

C value of -62 

19.2‰. Although high variability and overlapping ranges of 
13

C values for C3 and C4 grasses 63 

prevent perfect classification, a significant correlation was found between 
13

C-based estimates 64 

of % C4-grass pollen in surface-sediment samples and the abundance of C4 grasses on the 65 

landscape at ten sites in North America (Nelson et al., 2008).  66 

Despite the useful paleoenvironmental information obtained from SPIRAL, the existing 67 

technique has several inherent limitations. First, SPIRAL was developed (Nelson et al., 2007) 68 

and validated (Nelson et al., 2008) with a small amount of data from North American grasses and 69 
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grasslands. For example, only four C4 grasses and four C3 grasses were used to identify the 70 

threshold 
13

C value separating C3 and C4 (Nelson et al., 2007). Thus the applicability of this 71 

technique to a broader range of grassland ecosystems remains uncertain. Additionally, a fixed 72 


13

C threshold was selected to differentiate C3 and C4 grasses, which may be problematic 73 

because 
13

C values vary both within and among species (Cerling, 1999). Finally, there is no 74 

formal propagation of uncertainty for SPIRAL, which means that the precision of the technique 75 

is not well constrained. In this study, we address these problems by (1) expanding the reference 76 


13

C dataset for distinguishing C3- from C4-grass pollen, (2) improving the validation dataset 77 

from North America (Nelson et al., 2008) by adding new surface-sediment samples from lakes in 78 

Africa and Australia, and (3) developing and evaluating a hierarchical Bayesian model to 79 

estimate the percent of C3- and C4-grass pollen based on SPIRAL 
13

C data.  80 

 81 

2. METHODOLOGY 82 

 83 

2.1 Herbarium and surface-sediment samples 84 

We performed 
13

C analyses on pollen from herbarium specimens of 28 grass species, 85 

including additional pollen from five of the eight species previously analyzed in Nelson et al. 86 

(2007) (Electronic Annex EA-1). Our expanded training dataset includes these new results and 87 

all of the 
13

C data reported in Nelson et al. (2007). These specimens were collected between 88 

1927 and 1995 from Africa, Australia, and North America.  89 
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As a step to develop a global relationship between C4 grass abundance and SPIRAL data, 90 

we performed 
13

C analysis of pollen in surface sediments from Africa and Australia to 91 

supplement the published 
13

C dataset from North America (Nelson et al., 2008). All of the 92 

surface-sediment samples from Africa and Australia come from lakes, with the exception of 93 

Rumuiku Swamp in Africa (Electronic Annex EA-2). The samples typically represent the upper 94 

~5 cm of sediment, which likely accumulated during the past several decades. We do not have 95 

data on the composition and abundance of grasses around our African and Australian sites. 96 

Therefore, we estimated the relative abundance or productivity of C4 grasses around each site 97 

based on the relationships of C4 grasses with various environmental factors reported in the 98 

literature (Electronic Annex EA-2). In equatorial East Africa, C4-grass abundance (Livingstone 99 

and Clayton, 1980) and productivity (Tieszen et al., 1979) are negatively correlated with 100 

elevation, with C4 grasses predominating below ~1500 m. We used the relationship in Tieszen et 101 

al. (1979) to estimate C4 grass abundance around each of our African sites. In Australian 102 

grasslands, minimum January temperatures (JANT; °C) and median August rainfall (AURF; cm) 103 

are strong predictors of C4 grass abundance in the regional grass flora (Hattersley, 1983). We 104 

obtained JANT and AURF data from the Australian Bureau of Meteorology (www.bom.gov.au) 105 

and used the relationship in Hattersley (1983) to calculate C4 grass abundance around each of our 106 

Australian sites. For each North American site the percent contribution of C4 grasses to the total 107 

potential production of grasses was determined using the relationship between latitude and C4-108 

grass productivity (Tieszen et al., 1997).  109 

 110 

 111 

 112 

http://www.bom.gov.au/
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2.2 Sample treatment and isotopic analysis 113 

All samples were treated using standard pollen preparation techniques modified to 114 

exclude carbon-containing compounds (Nelson et al., 2006), except that hydrofluoric acid was 115 

not used for the herbarium specimens, which has little influence on pollen 
13

C (Jahren, 2004). 116 

Grass pollen gains were isolated in Nanopure water on a microscope slide at 200x magnification 117 

using an Eppendorf Transferman micromanipulation device. Individual grains were transferred 118 

to ~0.4 L drops of Nanopure water and applied to a SWiM device interfaced with a 119 

ThermoFinnigan Delta V IRMS using a steel and glass syringe (Nelson et al., 2007; Nelson et 120 

al., 2008). Sample data were normalized to VPDB using a two-point normalization curve with 121 

in-house 2.5 nmol C standards of leucine (true δ
13

C = -32.1‰), sorbitol (true δ
13

C= -16.2‰), 122 

serine (true δ
13

C = -25.7‰), and/or glycine (true δ
13

C = -37.9‰) that were calibrated against the 123 

USGS40 and USGS41 glutamic acid standards.  124 

The number of individual grains of grass pollen applied to the SWiM device ranged from 125 

88 to 239 per sample for the herbarium and surface-sediment samples. We followed Nelson et al. 126 

(2007; 2008) for the 
13

C analysis of individual pollen grains. Briefly, along with each sample, 127 

we analyzed blanks of Nanopure water to which a single pollen grain was added and then 128 

removed. The mean plus 2 standard deviations of blank CO2 yields was set as a minimum size 129 

threshold; grains below this threshold were excluded. The final 
13

C data were corrected for 130 

blank 
13

C content using isotopic mass balance. The 
13

C values of herbarium specimens were 131 

corrected to a pre-industrial δ
13

C value of atmospheric CO2 (-6.3‰; Friedli et al., 1986). 132 

 133 

 134 

 135 
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2.3 Statistical model 136 

We chose a Bayesian approach for our statistical analysis. Bayesian methods differ 137 

theoretically from more widely-used frequentist approaches primarily in that Bayesian methods 138 

include prior distributions for all unknown parameters to be estimated. Following a fundamental 139 

theorem of probability known as Bayes’ theorem, prior distributions can be combined with the 140 

likelihood of a given dataset (i.e., the probability of observing the dataset, given as a function of 141 

unknown parameters) to yield posterior parameter distributions. Formally and conceptually, a 142 

posterior distribution represents a prior notion of an unknown parameter value, updated with 143 

available data according to the proposed model. In many cases (e.g. linear regression), Bayesian 144 

and frequentist approaches yield essentially equivalent results when the prior distributions 145 

selected are uninformative (i.e. provide little constraint on the unknown parameters), and/or 146 

when the dataset is sufficiently large to overwhelm the priors. In other cases, however, the choice 147 

of priors can be influential, and the inherent subjectivity in assigning priors has been central to 148 

arguments for and against the use of Bayesian methods. For a summary of these theoretical 149 

considerations, see Savage (1962). 150 

From a pragmatic standpoint, advances in computational methods have provided a 151 

consistent and convenient framework for fitting complex models from a Bayesian perspective, 152 

where a frequentist approach would be infeasible or impossible. This practical advantage is the 153 

motivation for our Bayesian model. The model we propose below is relatively straightforward, 154 

and is closely related to model-based clustering methods (Fraley and Raftery, 2002). 155 

Nevertheless, the exact model structure is specific to our context and goals, i.e. estimating C4 156 

grass abundance in unknown samples and the likelihood that they contain C4 grass pollen. We 157 

know of no frequentist approach that would suffice to fit such a model, whereas in a Bayesian 158 
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context it can be solved using generic numerical methods. For a practical introduction to such 159 

methods, we recommend Clark (2007) and Hoff (2009). 160 

We designed a hierarchical Bayesian model to predict the percent of C4 grains in samples 161 

of unknown composition based on the 
13

C values of individual grass pollen grains (Fig. 1). At 162 

the basis of the model is the likelihood function 163 

yi ~

N mC3
,sC3

2( ), xi = 0

N mC4
,sC4

2( ), xi =1

ì

í

ïï

î

ï
ï

 164 

in which, for the i
th

 grain in the sample, yi is the measured 
13

C of the grain, xi is a binary 165 

variable identifying the grain as C3 (xi = 0) or C4 (xi = 1), µ and σ
2
 represent the population 166 

means and variances (respectively) for C3 and C4 grains as indicated by subscripts, and N(µ, σ
2
) 167 

denotes the normal (Gaussian) distribution with mean µ and variance σ
2
. In other words, the 168 

likelihood is the conditional probability of observing the 
13

C value of an individual grain, given 169 

the classification of the grain and assuming normally-distributed 
13

C values for both C3 and C4. 170 

We calculated 

   

mC3
, mC4

, sC3

2
, and sC4

2
 from the herbarium dataset described above, and 171 

subsequently treated these variables as fixed in our predictive model.  172 

Because the C3/C4 identity of the pollen grains in sediment samples is unknown, we 173 

added a second hierarchical level to model x, the indicator variable for C4 presence, based on the 174 

unknown proportion of C4 grains in the population, θ: 175 

xi ~ Bernoulli q( ) 176 

i.e., 177 
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xi =
1 with probability q

0 with probability 1-q( )

ì

í
ï

î
ï

 178 

The unknown parameter θ requires a prior distribution as well. In defining this prior, we 179 

introduced a final hierarchical level in the model to accommodate samples composed of (1) 180 

purely C3, (2) purely C4, or (3) both C3 and C4 pollen grains. We refer to these sample types as 181 

“C3-only”, “C4-only”, and “mixed”, respectively, and define the prior distribution of θ separately 182 

for each: 183 

q ~

0 for C3-only samples

Uniform 0,1( ) for mixed samples

1 for C4 -only samples

ì

í

ï
ïï

î

ï
ï
ï

 184 

In other words, if a sample is identified as C3-only or C4-only, then θ is assigned a 185 

constant value of 0 or 1 (respectively). For mixed samples, θ must be estimated based on the 186 

data. In this case, the uniform prior represents our lack of knowledge of the true proportion of C4 187 

in the sample by assuming a priori that all values of θ are equally likely.  188 

The compound prior on θ effectively defines three distinct sub-models. In a Bayesian 189 

framework, these models can be fit simultaneously to formally compare their ability to describe a 190 

given dataset. This simple form of Bayesian model selection (Dellaportas et al., 2002) treats the 191 

choice of model itself as an unknown parameter, which therefore requires its own prior 192 

distribution. We assumed that the sub-models were equally likely a priori, and thus assigned 193 

each a prior probability of 1/3. The posterior estimate of the model-selection parameter then 194 

yields “posterior model probabilities” representing the relative probability that each candidate 195 

model (i.e. sample type) is the true model. This allows for hypothesis testing analogous to the 196 
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use of p-values (e.g. rejecting a candidate model if it has a posterior probability <0.05; Marden, 197 

2000). 198 

The division of the main hierarchy into three possible submodels serves two purposes. 199 

First, for samples that truly contain only one pollen type, the corresponding monotypic model is 200 

conceptually correct, and generally provides a better fit than if only the “mixed” model is 201 

allowed (data not shown). Second, fitting this model produces a posterior estimate of θ while 202 

simultaneously calculating the posterior probability of each sample type. In applications aimed 203 

primarily at assessing the relative abundance of C4 grains in a sample (e.g. to compare C4 204 

abundance across space or time), θ will be of primary interest. However, in some cases the goal 205 

of SPIRAL may be to identify whether one pollen type is present or absent in a sample (e.g. 206 

Urban et al., 2010). For that purpose, the posterior model probabilities allow explicit 207 

quantification of the probability that either or both types are present.  208 

We fit the model by Markov Chain Monte Carlo (MCMC) sampling using the software 209 

package JAGS (version 3.1.0; Plummer, 2011) interfaced through R (R Development Core 210 

Team, 2010) with the library rjags (Plummer, 2012). Briefly, the software uses a variety of 211 

MCMC algorithms to sample over possible values of the unknown parameters. For each 212 

parameter, the resulting posterior distribution (i.e. histogram of all values sampled during the 213 

MCMC sequence) is an approximation of the true probability density function of the parameter 214 

given the dataset of observations. Any population statistic of interest can then be estimated from 215 

the corresponding sample statistic for the MCMC sample. For example, we summarize θ by its 216 

posterior median, calculated as the sample median across the entire MCMC sequence.  217 

We used pseudodata from the herbarium samples to verify the model. We produced 218 

samples with known composition of 0 to 100% C4 in 10% increments, and sample sizes of 50, 219 
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100, and 150 grains. We randomly generated 1000 replicates of each % C4 X sample-size 220 

combination, and fit the model to each replicate sample to generate posterior estimates of θ and 221 

posterior probabilities for each sample type (C3-only, C4-only, or mixed). For comparison, we 222 

also estimated % C4 for each sample using the threshold-based classification method (i.e. Nelson 223 

et al., 2007), but with the threshold value (the midpoint between 

   

mC3
and mC4

) updated to reflect 224 

the expanded herbarium dataset. Finally, we used the model to estimate the percent of C4 grains 225 

in the surface sediments of sites in Africa, Australia, and North America. For comparison of 226 

these estimates with the relative abundance of C4 grasses on the landscape, we used reduced 227 

major axis regression because of symmetry in the variables on the x and y axes (Smith, 2009), 228 

and because both the x and y variables contain uncertainty (McArdle, 1988). The fit of this 229 

regression was compared with a 1:1 relationship following equations outlined in McArdle 230 

(1988). These regression analyses were performed in R (R Development Core Team, 2010). 231 

 232 

3. RESULTS AND DISCUSSION 233 

 234 

3.1 
13

C of C3 and C4 grass pollen: an expanded training set 235 

The expanded training set is based on pollen from 31 herbarium specimens. The number 236 

of grass pollen grains applied to the moving wire with peak areas exceeding the 2σ threshold of 237 

blanks ranges between 21 and 130 grains per sample, with an average of 62 grains per sample 238 

(Electronic Annex EA-1). The expanded training set therefore includes 1,921 
13

C values, 1,402 239 

of which were obtained as part of the present study. An average of 32% of applications of pollen 240 

from herbarium samples yield a peak area above the blank threshold, which is lower than results 241 

from surface-sediment samples from North American lakes (47%, Nelson et al., 2008) and 242 
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Miocene/Oligocene sediment samples (45%, Urban et al., 2010). The mean δ
13

C values of grass 243 

pollen range between -42.7 and -24.0‰ for C3 species and between -17.2 and -10.5‰ for C4 244 

species (Electronic Annex EA-1). A majority of the pollen δ
13

C values fall within the typical 245 

δ
13

C ranges for C3 (-34 to -22‰) and C4 (-15 to -10‰) plants (Fig. 2; Electronic Annex EA-1). 246 

However, similar to previous results, the δ
13

C variation is large, with many individual data points 247 

exceeding these ranges, likely because of variability in the magnitude and composition of the 248 

analytical blank (Nelson et al., 2007).  249 

The updated herbarium dataset yields somewhat different parameter estimates than those 250 

reported by Nelson et al. (2007). Estimates of mC3
= -29.6‰ and mC4

= -13.8‰ are more 251 

negative than previously determined values (–26.9‰ and –11.5‰, respectively), leading to an 252 

estimated threshold value of –21.7‰ that is also more negative than the original value (–19.2‰). 253 

Variability of δ
13

C in the new dataset is similar between C3 and C4 grains (standard deviation = 254 

9.5‰ for each), which is greater than previously determined for C3 (6.3‰), but similar for C4 255 

(9.6‰). Based on the updated values, the probability of an individual grain being identified as C4 256 

by the Bayesian model varies smoothly over the range of possible δ
13

C values (Fig. 2).  257 

In terms of estimating the overall composition of unknown samples, the pseudodata 258 

experiments show a striking improvement of the Bayesian approach. Overall, results from 259 

samples of pseudodata randomly generated from the herbarium dataset illustrate that Bayesian 260 

estimates of % C4 grass pollen are highly accurate (Fig. 3). For all sample sizes tested, bias (i.e., 261 

the mean deviation between the estimated and true %C4) is ≤5.5%, with largest biases when true 262 

C4 composition is 80% (n=50) or 10% (n≥100). Average biases across all true % C4 values are 263 

only 2.9% for sample size n=50, and 2.4% for n=100 and n=150. By contrast, the original 264 

threshold-based methodology of Nelson et al. (2007) produces accurate estimates of sample 265 
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composition when true composition is near 50%, but becomes increasingly biased towards 266 

underestimation (overestimation) as true % C4 increases (decreases). Maximum bias of ~16% for 267 

the threshold-based approach occurs for purely C3 or C4 samples, and average bias across all true 268 

% C4 values is 8.2%. 269 

The improved accuracy of the Bayesian model for samples with low and high abundances 270 

of C4 grass pollen is a function of its hierarchical structure. The model explicitly incorporates θ, 271 

the estimated relative abundance of C4 grains in the population, as well as a model-selection 272 

parameter representing the possibility that either C3 or C4 can be entirely absent from a sample. 273 

The MCMC approach then solves for these parameters simultaneously while accounting for the 274 

fact that they both influence the likelihood of an individual grain being identified as C3 or C4. By 275 

contrast, the threshold method relies on a fixed threshold value with classification accuracies for 276 

C3 and C4 grains that are independent of sample composition. In practice, the threshold method 277 

misclassifies approximately the same percent C3 and C4 grains. Thus, near 50% true C4 278 

abundance, the number of misclassification errors for C3 and C4 are similar, which results in 279 

offsetting effects on estimated % C4 and small net bias. However, when % C4 is far from 50% 280 

the misclassification errors are imbalanced, which results in a biased estimate of % C4.  281 

To illustrate how the hierarchical Bayesian model overcomes this limitation, here we 282 

consider a hypothetical sample with low (<50%) C4 abundance, and we note that the opposite 283 

rationale applies for samples with high C4 abundance. For a low-C4 sample, the data favor a 284 

correspondingly low estimate of θ. Consequently, the likelihood of any grain being identified as 285 

C4 in the model is diminished, reflecting the reduced probability of a C4 grain being found in a 286 

sample when the true abundance of C4 grains is low. This in turn causes fewer C3 grains with 287 

ambiguous δ
13

C values to be misclassified as C4. As the true percent of C4 in the hypothetical 288 
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sample approaches 0, the data will begin to favor selection of the C3-only model, which prevents 289 

misidentification of C3 grains. These same mechanisms lead to an increased proportion of C4 290 

grains misclassified as C3 in low-C4 samples. However, since a sample with low C4 abundance 291 

has fewer C4 than C3 grains by definition, the net effect is an improvement in accuracy relative to 292 

the threshold-based method.  293 

Our Bayesian model can also be used to assess the presence or absence of C4 grasses on 294 

the landscape (Fig. 4). For example, for pseudodata samples containing 0% C4, the posterior 295 

probability of the C3-only model [P(C3-only)] has a median value of >0.95, indicating strong 296 

preference for the correct model most of the time. Similarly, for pseudodata samples containing 297 

100% C4, median P(C4-only) is ~0.94 indicating strong preference for the C4-only model. 298 

Furthermore, our results suggest that the method has substantial power to reject the C3-only 299 

model when C4 grains are in fact present. For example, with a sample size of 100 grains, median 300 

P(C3-only) is <0.01 for samples with only 20% C4. Samples with C4 present in lower abundance 301 

are more ambiguous. Among samples with 10% C4, for instance, median P(C3-only) of a 100-302 

grain sample is 0.54. The ability to identify C4 presence improves with sample size. For example, 303 

for a sample with 10% C4, median P(C3-only) is 0.23 with n=150 grains, compared to 0.73 with 304 

n=50 grains. Thus, for samples of relatively large size (>100 grains) the practical detection limit 305 

for reliably identifying the presence of C4 grains in a sample is between 10-20% C4.  306 

 307 

3.2. Field validation of grass-pollen 
13

C as a proxy indicator of C3/C4 abundance 308 

For the surface-sediment samples from Africa and Australia, the number of grass pollen 309 

grains with peak areas exceeding the 2σ threshold of blanks ranges between 30 and 142 grains 310 

per sample, with an average of 52 grains per sample (Electronic Annex EA-2). The total surface-311 
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sediment dataset therefore includes 1,522 
13

C values, 773 of which were obtained as part of the 312 

present study. On average, 48% of applications of pollen from sediment samples yield a peak 313 

area above the blank threshold. A majority of the pollen δ
13

C values fall within or between 314 

typical δ
13

C ranges for C3 and C4 plants (Electronic Annex EA-2, EA-3, and EA-4). However, as 315 

with the expanded herbarium dataset, the δ
13

C variation is large.  316 

Bayesian estimates of the median % C4 grass pollen from the surface-sediment samples 317 

range between 0 and 99% (Fig 5; Electronic Annex EA-2). Across the large spatial and 318 

environmental gradients represented by our surface-sediment sites, we expected that the 319 

abundance of C3 and C4 grass pollen in surface sediments would be overall similar to the 320 

abundance of C3 and C4 grasses on the landscape. Consistent with this expectation, there was a 321 

significant relationship between the Bayesian estimates of % C4 grass pollen in the surface-322 

sediment samples from Africa, Australia, and North America and C4-grass abundance around 323 

these sites (Fig. 5; n= 24, p< 0.001, r
2
= 0.65). Furthermore, this relationship does not differ from 324 

a 1:1 relationship (p= 0.45), indicating no consistent bias in the representation of C3 and C4 325 

grasses that may be associated with factors such as pollen productivities or preservation in 326 

sediments. We excluded one site, Rumuiku Swamp, from the regression because it had unusually 327 

low % C4 grass pollen for its elevation, probably because the local swamp environment 328 

supported a greater abundance of C3 grasses. However, the regression remains significant even if 329 

Rumuiku swamp is included (n=25, p< 0.001, r
2
= 0.54). Nelson et al. (2008) found a similar 330 

relationship in North America using the original (-19.2‰) threshold method, but lacked data 331 

from sites with <20% C4 grass abundance on the landscape. The additional data in the present 332 

study helps to extend this range and further validates SPIRAL as a tool for paleoenvironmental 333 

reconstruction.  334 
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 335 

3.3 Application to the paleorecord: interpreting SPIRAL δ
13

C data in the Bayesian 336 

framework 337 

The improved estimates of C4-grass abundance from incorporation of SPIRAL data into 338 

the Bayesian model can help to assess factors (e.g. atmospheric CO2 concentrations) controlling 339 

the origin, expansion, and variations in abundance of C4 grasses in Earth’s history. To 340 

demonstrate the application of the model to the paleorecord, we reevaluated a published SPIRAL 341 

dataset (Urban et al., 2010). Briefly, Urban et al. (2010) measured δ
13

C of grass pollen grains in 342 

sediments spanning the early-Oligocene to middle-Miocene from sites in southwestern Europe 343 

and used a threshold value of -19.2‰ (before modification for variations in δ
13

C of atmospheric 344 

CO2 and aridity) to detect the presence of pollen from C4 grasses. The samples in that study 345 

contained between 63 and 100 grains. Results indicated that C4 grasses appeared on the 346 

landscape of southwestern Europe no later than the early Oligocene, which suggests that low 347 

pCO2 may not have been the main driver and/or precondition for the development of C4 348 

photosynthesis in the grass family.  349 

We evaluated the probability that the δ
13

C data in samples from Urban et al. (2010) 350 

support the C3-only model in our Bayesian analysis. We adjusted the δ
13

C values of the Urban et 351 

al. (2010) samples to that of pre-industrial δ
13

C of atmospheric CO2 (-6.3‰) using estimated 352 

values of δ
13

C of atmospheric CO2 during the Cenozoic based on benthic foraminifera δ
13

C data 353 

(Tipple et al., 2010). The probability of a C3-only model was <0.01 (indicating >99% probability 354 

that at least some C4 grains were present) for all samples (Electronic Annex EA-5). However, 355 

low water availability may have caused the δ
13

C values of C3 plants to shift in the positive 356 

direction (Ehleringer and Cooper, 1988). To account for the potential influence of aridity we 357 
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shifted the mean δ
13

C value of our C3 training set by 1-3‰ in the positive direction, as in Urban 358 

et al. (2010). All but one sample had a P(C3-only) of <0.01 after addition of 1‰ to the mean δ
13

C 359 

value of the C3 training dataset. Six of the eight samples, including the oldest two, had a P(C3-360 

only) of <0.05 after addition of 3‰ to the mean δ
13

C value of the C3 training dataset (Electronic 361 

Annex EA-5). The mean Bayesian estimates of % C4 grass pollen are particularly high in the 362 

oldest two samples, consistent with the identification of plant communities in regions where 363 

today C4 grasses are dominant as the closest analogs for the corresponding pollen assemblages 364 

(Suc, 1984). Therefore, our Bayesian estimates of % C4 grass pollen confirm the prior conclusion 365 

of Urban et al. (2010) that C4 grasses occurred on the landscape of southwestern Europe by at 366 

least the early Oligocene. The main advantage of the Bayesian model over the threshold 367 

approach used the context of the Urban et al. (2010) study is that the former allows for an 368 

explicit estimate of the probability of C4 grasses being present on the landscape, which is 369 

essential for quantitatively assessing the timing of C4-grass origin in geological history. 370 

Overall, our new δ
13

C data along with the Bayesian framework improve quantitative 371 

reconstructions of variation in the relative abundance of C3 and C4 grasses in response to 372 

environmental changes in the paleorecord. The flexible and hierarchical nature of the Bayesian 373 

model yields more accurate estimation of the abundance of C4 grass pollen than the simpler, but 374 

biased, threshold approach, and also provides posterior model probabilities that enable 375 

hypothesis testing. Thus we recommend that future estimates of C3 and C4 grass abundances 376 

should, when possible, be made using Bayesian methods rather than threshold-based counting 377 

approaches. Bayesian analyses have begun to have important applications in the interpretations 378 

of geochemical isotope data. For example, recent studies have used Bayesian analysis to develop 379 

probabilistic region-of-origin assignments in wildlife and human forensics (Kennedy et al., 2011; 380 
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Wunder, 2010), enhance radiocarbon-age modeling for sediment records (Blaauw et al., 2007; 381 

Blaauw and Christen, 2011), and enable detection of climate-related shifts in elemental and 382 

isotopic abundances in peat cores (Gallagher et al., 2011). The increased use of Bayesian 383 

approaches promises to transform the environmental interpretations of geochemical data, 384 

especially in cases where small samples are involved. We expect that Bayesian analyses will 385 

become a mainstay of geochemistry.   386 
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Figure legends 495 
 496 
 497 

Figure 1. Conceptual diagram of the hierarchical Bayesian model used in this study. The 498 

likelihood function describes the probability distribution of 
13

C values for each pollen grain in a 499 

sample (yi), given its classification as C3 or C4 (xi = 0 or xi = 1, respectively). The distribution of 500 

xi in turn depends on θ, the proportion of C4 grains in the population. Finally, the prior 501 

distribution of θ varies among sub-models representing three possible sample types (C3-only, 502 

mixed, C4-only). See Section 2.3 for details.  503 

 504 

Figure 2. Histograms of 
13

C values from individual grains of grass pollen (1‰ bins). The 505 

dashed grey line represents data from C3 grasses and the black line data from C4 grasses (y-axis 506 

on left). The solid grey line represents the calculated probability of individual grains being 507 

classified as C4 as a function of 
13

C (y-axis on right). 508 

 509 

Figure 3. Estimated vs. true % of C4 grains in samples of pseudodata derived from the herbarium 510 

training dataset. Columns correspond to three sample sizes (n=50, 100, and 150 grains). Rows 511 

correspond to results from Bayesian (top) and threshold (bottom) methods. For each panel, the 512 

mean (thick black line) and 95% confidence intervals (thin black lines) of estimates from 1000 513 

random samples are plotted. The solid grey lines represent 1:1 relationships.  514 

 515 

Figure 4. Probability that each candidate model (rows: C3-only, mixed, and C4-only) is the true 516 

model for pseudodata samples of known size (columns: 50, 100, or 150 grains) and composition 517 

(x-axis: 0-100% C4). The dashed grey horizontal lines represent p = 0.05. For each set of 518 
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pseudodata samples, the box represents the 25-75th percentiles of posterior probabilities, with 519 

median indicated by a heavy black line. The whiskers encompass all remaining points within 1.5 520 

times the interquartile range of the box, and points outside this range are plotted individually. 521 

 522 
Figure 5. Estimated C4 coverage (%) on the landscape around lakes in Africa (diamonds), 523 

Australia (X symbol), and North America (triangles), compared to the abundance of C4 grass 524 

pollen (%) in the surface-sediments of these sites, as estimated from 
13

C of individual grains of 525 

grass pollen using the Bayesian model. The major axis slope is 0.97 and 95% confidence interval 526 

of the slope is 0.75 - 1.24. The data point with an asterisk is excluded from the regression, as 527 

explained in section 3.2. The 1:1 line is the solid grey line; the regression line is represented by 528 

the black dashed line. Error bars on each data point represent 95% confidence intervals. 529 

 530 
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