Repeated Measures
and Interventions



Longitudinal Data
(aka Repeated Measures)

 The same observational unit (plot, individual,
etc) is often measured repeatedly over time

« Usually have many such observation units

 Observations on the same unit over time are
not independent
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Alternatives for Repeated Measures

e Random effects

- By time: Assumes all observational
units move up or down in sync

 probably won't solve lack of independenc

- By unit: Assumes a unit is offset from
“average” by some constant amourgt

* Autoregressive: AR(1)

- Assumes each unit is similar from one,

time step to the next but not that units—————
are synchronized

* With short t.s. almost impossible to
distinguish AR vs individual effects



Example: Growth

e Consider a population of individuals censused 3
times who's growth is a function of X

ui,t:BO_I_ BlXi,t
e |f we assume a common variance and autocor.
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Likelihood Approach

library(mvtnorm) 1t'=6 21 32

H <- matrix(c(0,1,2,1,0,1,2,1,0),3,3) distance
41 0 1 matrix

Inlik <- function(theta){ 12 10

beta <-theta[1:2]
sigma <- theta[3]

v
rho <-theta[4] — \ 1 2
SIGMA <- sigma/(1-rho”2)*rho*H p P
p L p
L=0 2 "
for(i in 1:n){ L

L =L - dmvnorm(g[i,],beta[1]+beta[2]*X[i,], SIGMA,log=TRUE)
}

return(L)

}
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Bayesian Approach

model{
beta ~ dmnorm(b0,Vb)
sigma ~ dgamma(0.01,0.01)
rho ~ dunif(-1,1)
SIGMA <-inverse(1/sigma/(1-rho*2)*rho”H)

for(i in 1:n){
muli,] <- beta[1]+beta[2]*X]i,]
g[i,] ~ dmnorm(muli,],SIGMA)
h
h



State Space approach

 Bayesian version of AR(1) repeated measures
did not separate process and measurement
uncertainty

« Easy to extend the State Space model to the
repeated measures context with a common rho

gi,tNN<BO+BlXi,t+pgi,t—l’ 0_2)

gf‘,oz)NN<gi,z’T2)

Biggest difference is that the code will loop over both individuals and time



Generalization of Repeated
Measures

e Can accommodate mixed models / random
effects (though some would be redundant)

e Can accommodate nonlinear models

 Covariance matrix ONLY works with NORMAL
PDF

» State Space version can work with most any
PDF because we separate the data model (not
autocorrelated) from the process error
(autocorrelated)



Missing Data Covariance Matrix

* Drops missing ROWS and COLUMNS from
matrix

Missing 3"

observation so drop 1

both the third row

and third column P

from the full matrix > 3
D

; 4

D
D

[ X1 X2 X4 X5 X6]




Hierarchical AR models

 Thus far have focused on autocorrelation in the
STATE variables as part of the process model

* |In hierarchical models, can also model
autocorrelation in the hierarchical parameters

- Time-varying model parameters

x~N(0,7°)
v

a~N(0,T)
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Figure 2. Predicted (median) and observed area burned in the April-May wildfire
season in Ewverglades National Park, 1948-2001. (top) One-year predictions.
(bottom) Three-month predictions that included mean November—January SOI as a
covariate.

ARMA(2,2) with
temporally varying
parameters

Beckage and Platt 2003

Fire in the Florida
Everglades

Provides a means for addressing
non-stationary processes
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Figure 3. Evolution of model parameters (median values) through time. (top) One-year
predictions. (bottom) Three-month predictions that included mean November—]January
SOl as a covariate.



Intervention Analysis

e Treatment effects in TIME
- Pretreatment data establishes unit differences

 Hypotheses are usually that one or more
parameters changed with treatment

* Alternate model (NULL) is no change in
parameters with treatment

 Time can be modeled as
- Covariate (explicit)
- Time varying treatment (implicit)
- Autocorrelation



a) Mean effect

o= Intervention

©

el :

3 |

S Pretrealment | TrOatTaHt A

Q

W

g .

2 R ST el Control treatment

@

u: i

b) Pulse c) Slope d) Change in slope
| 1
| | i
Time t

FIGURE 9.21. Four examples of ways in which an intervention might occur. The trend
the solid line “Treatment A™ might not match that of the response to the treatment. For
example, a step change in a trcatment x (a) might elicit a trajectory of change in a
response variable y.



Change point / threshold detection
models

* Like Intervention models but the point in time
where the change in parameters occurs is itself
an unknown that needs to be estimated

» Challenging for likelihood models because the
likelihood has a discontinuity



betal ~ dmnorm(b0,Vb) ## prior betas
beta2 ~ dmnorm(b0, Vb)
prec ~ dgamma(s1,s2) ## prior precision

K ~ dcat(pi)

for (iin 1:n){

mul[i
mu2[i]

muli

<- beta1
<- beta2

1.
1]

+ beta
+ beta2

2.
2.

*time
*time

#itdiscrete prior for breakpoint

1] ##prebreak

#Hpostbreak

<- |felse(i=K,mu2[i],mul[i]) ##process model
## data model

y[i] ~ dnorm(muli],prec)
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