Classic Time Series Analysis

Concepts and Definitions

• Let Y be a random number with PDF f

$$Y(t) \sim f(\theta, t)$$

• Define

$$\mu(t) = E[Y(t)]$$

- $\mu(t)$ is known as the <u>trend</u>
- Define the autocovariance

$$\begin{aligned} \gamma(t,s) &= COV[Y(t),Y(s)] \\ &= E[(Y(t) - \mu(t)) \cdot (Y(s) - \mu(s))] \end{aligned}$$

Stationarity

 Strict stationarity: joint PDF of Y does not change depending upon time

$$f(\theta, t_i + s) = f(\theta, t_j + s)$$

Second-order stationarity

$$\mu(t) = \mu$$

No trend

$$\gamma(t,s) = \gamma(|t-s|)$$

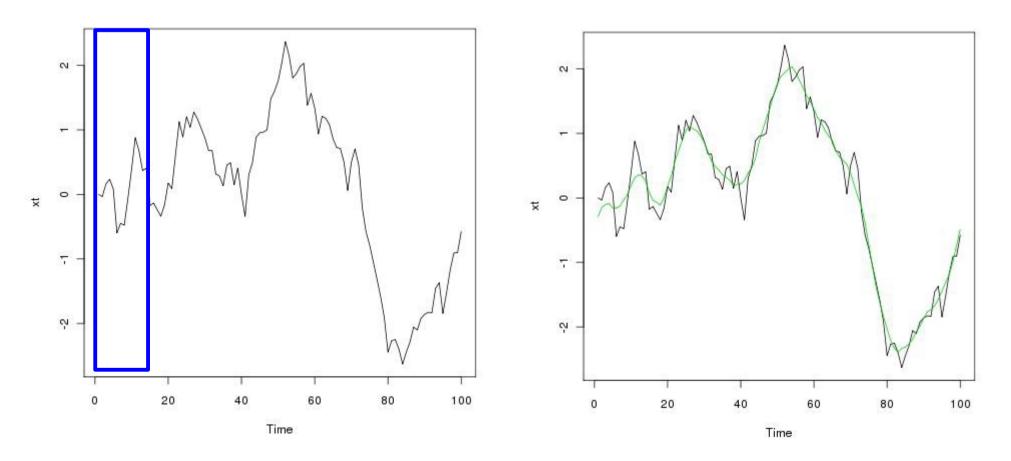
Covariance only a function of difference in time

Most common assumption

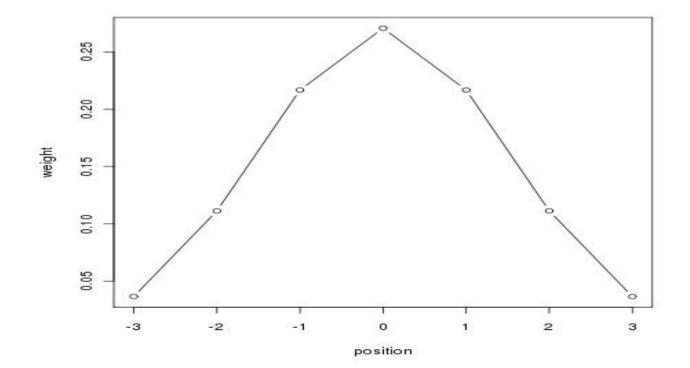
Descriptive Approaches

- Smoothing
- Detrending
- Differencing
- Autocorrelation
- Spectral decomposition (not covered)
 - Power spectra / Fourier transform
 - Wavelet

- Moving average
 - Calculated mean within a window



- Weighted moving average
 - Assign weights to different points within window
 - Weights should be symmetric and sum to 1



- Filtering
 - Assign weights to different points within window
 - Weights <u>NEED NOT</u> be symmetric and sum to 1
 - Generalization of Weighted Moving Average
 - R function: filter(x,k)
 - X = data
 - K = vector of weights (a.k.a. kernel)

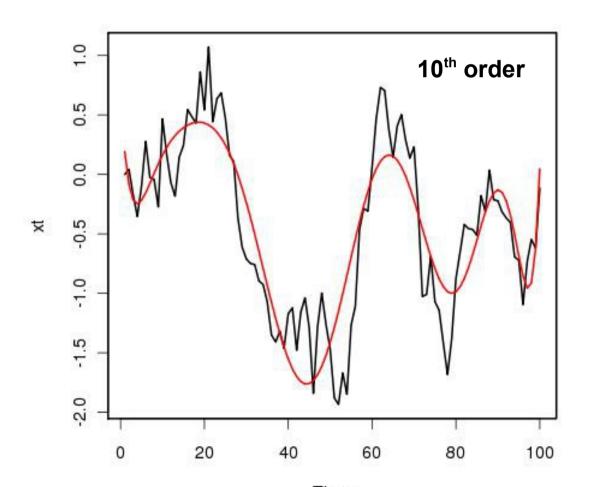
- e.g. k = c(0.1, 0.2, 0.4, 0.2, 0.1)

Polynomial Regression

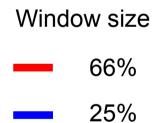
$$Y(t) = \sum_{0}^{k} \beta_{i} t^{i} + \epsilon_{t}$$

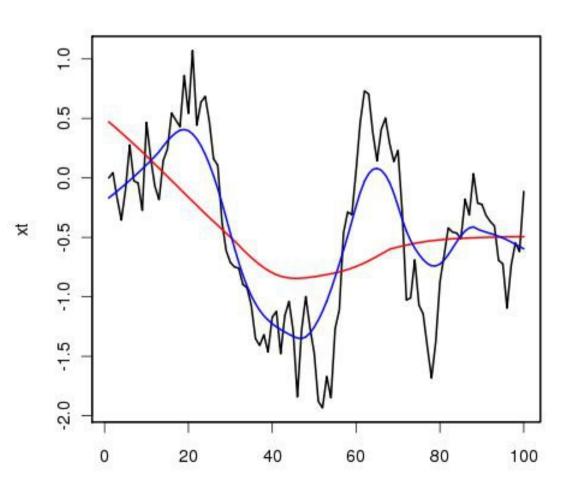
1

- R: Im(X ~ t + t^2 + t^3...)



- LOESS / LOWESS (R: lowess(x))
 - Local regression within a moving window
 - W = weighted





Descriptive Approaches

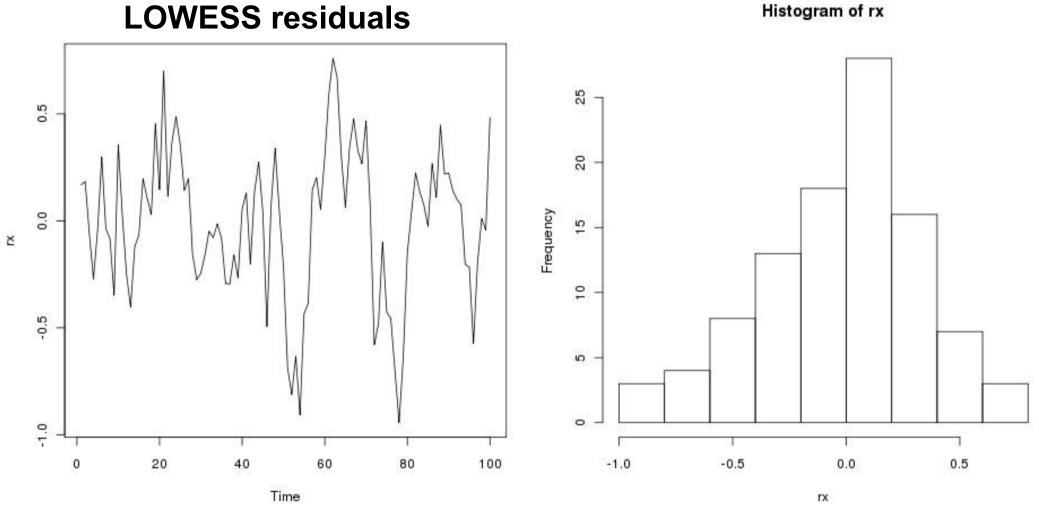
- Smoothing
- Detrending
- Differencing
- Autocorrelation
- Spectral decomposition (not covered)
 - Power spectra / Fourier transform
 - Wavelet

Detrending

- To meet the assumption of stationarity the trends in data need to be removed
- For exploratory purposes:
 - Estimate trend (smoothing)
 - Calculate residuals
 - Analyze residuals as a time-series
- For Analysis:

$$Y(t) = \hat{\mu}(t) + \Omega(t)$$

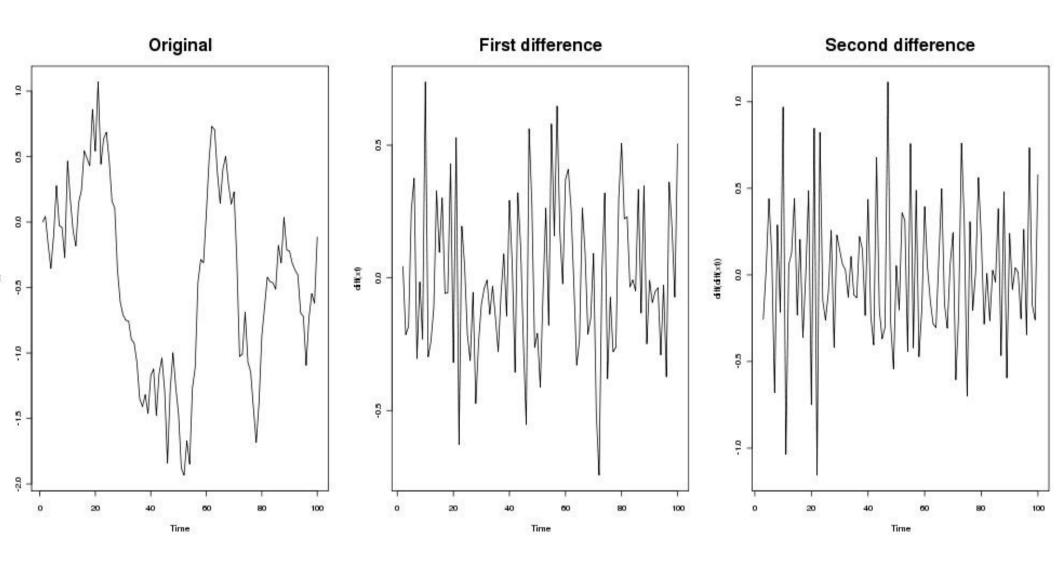
Trend Autocorrelated Error



- Goal: stationarity
 - Normal with mean=0
 - Homoskedastic
 - Still autocorrelated is OK

Differencing

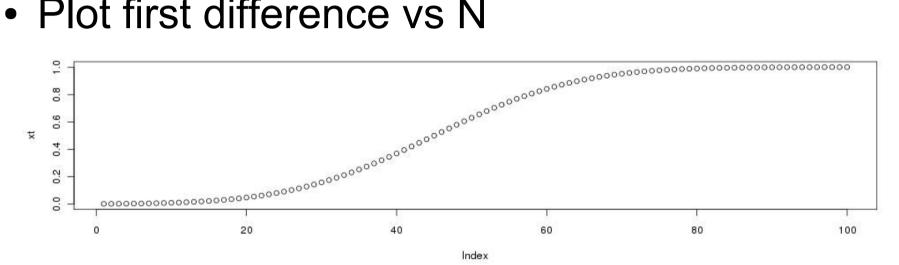
- Can help detrend, increase stationarity
- Can increase understanding of process
 - Often model change in X rather than X(t)
- Sometimes not autocorrelated (Markov)
- Discrete approx to derivative
- First difference $\Delta X = X_t X_{t-1}$
- Lagged difference $\Delta X = X_t X_{t-n}$
- Second difference $\Delta X_{t} \Delta X_{t-1}$

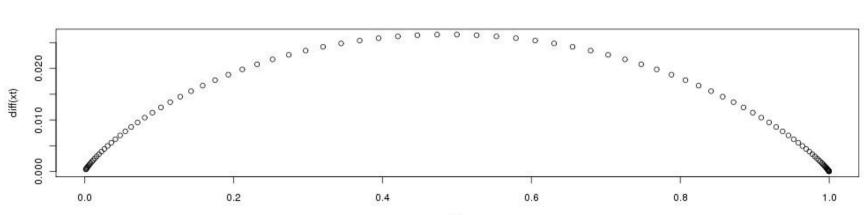


• R: diff(x)

Density Dependence

- dN/dt changes with N
- Plot first difference vs N





Descriptive Approaches

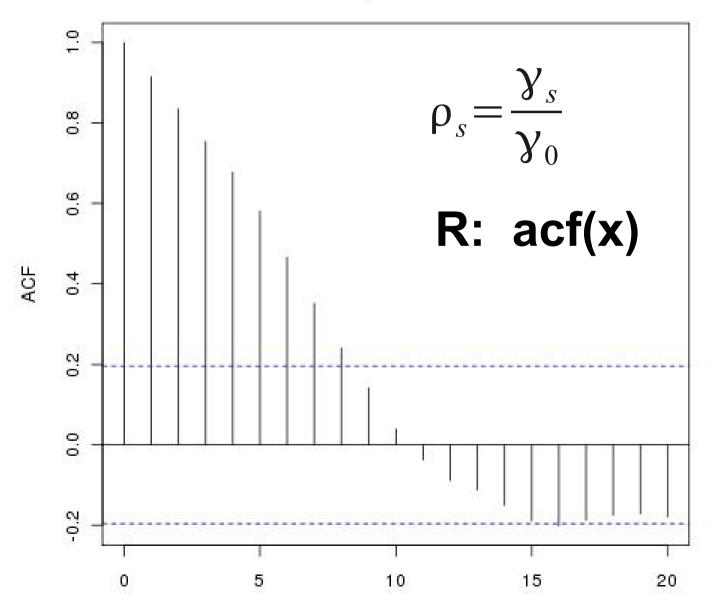
- Smoothing
- Detrending
- Differencing
- Autocorrelation
- Spectral decomposition (not covered)
 - Power spectra / Fourier transform
 - Wavelet

Autocovariance

- Covariance between time-series and itself
- If 2nd order stationary, just a function of the lag $\gamma(t,s) = \gamma(|t-s|)$
- Often written as $\gamma_s = Cov[Y_t, Y_{t-s}]$
- Special case: $\gamma_0 = Cov[Y_t, Y_t] = Var[Y_t]$
- Two time series can be related by their cross correlation: $\gamma_{XY,s} = Cov[X_t, Y_{t-s}]$

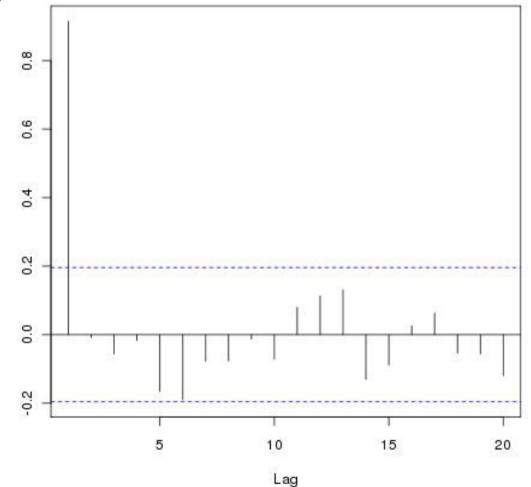
Autocorrelation

Correlogram



Partial and Cross-correlation

- Partial autocorrelation
 (R: pacf(x))
 - Autocorrelation at lag s after accounting for correlation in lags up to s-1
- Cross-correlation
 (R: ccf(x,y))
 - Correlation between
 X(t) and Y(t-s)



Descriptive Approaches

- Smoothing
- Detrending
- Differencing
- Autocorrelation
- Spectral decomposition
 - Power spectra / Fourier transform
 - Wavelet

Classic Time Series Models

- Account for lack of independence in observations
 - Model the temporal error structure
- Make forecasts that account for autocorrelation

$$Y(t) = \hat{\mu}(t) + \Omega(t)$$

Trend Autocorrelated error

• Note: remaining slides assume trend = 0

ARIMA model

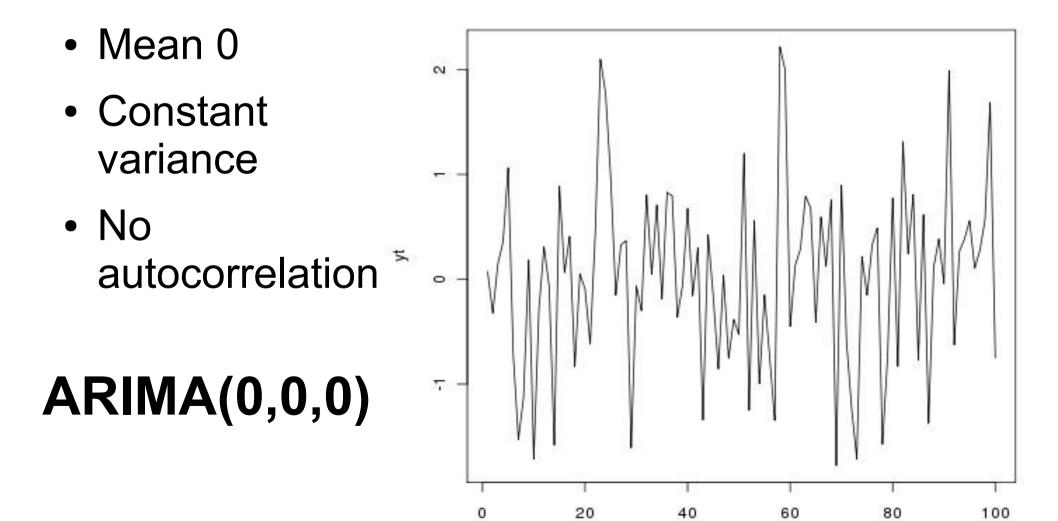
Autoregressive Integrated Moving Average

- General case for classic frequentist time series
- Contains a number of important special cases
 - AR : Autoregressive models (p)
 - I : Integrated models (d)
 - MA : Moving average models (q)
 - ARMA: Autoregressive moving average
 - Gaussian white noise
- Models are named based on the *order* of the three terms

ARIMA(p,d,q)

Gaussian white noise

$$Y_t = \epsilon_t$$



Autoregressive Models: AR(p) $Y_{t} = \sum_{i=1}^{p} \rho_{i} Y_{t-i} + \epsilon_{t}$

- Conceptually like fitting a linear regression against the last p values
- AR(1) = first-order Markov process = ARIMA(1,0,0) $E[Y_t] = Y_0 \rho_t^t$ $Var[Y_t] = \sigma^2 \sum_{i=0}^{t} \rho^{2i}$ • If $\rho = 1$, AR(1) is a random walk
- If $\rho = 1$, AR(1) is a random walk
- If $\rho = 0$, AR(1) = AR(0) = white noise

Covariance matrices

• If $|\rho| < 1$ then as t -> ∞

$$E[Y_t] = Y_0 \rho_t^t \rightarrow 0$$

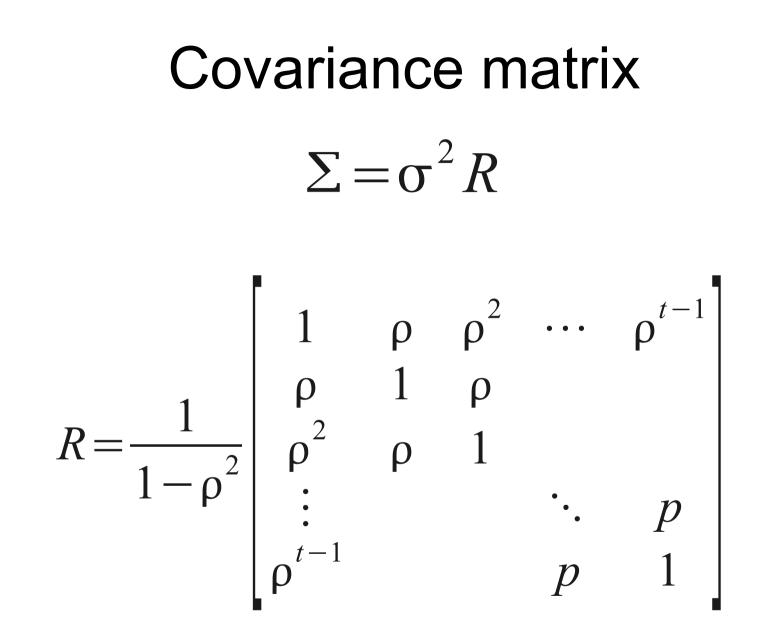
$$Var[Y_t] = \sigma^2 \sum_{i=0}^t \rho^{2i} \rightarrow \frac{\sigma^2}{1 - \rho^2}$$

• The covariance at lag s then becomes

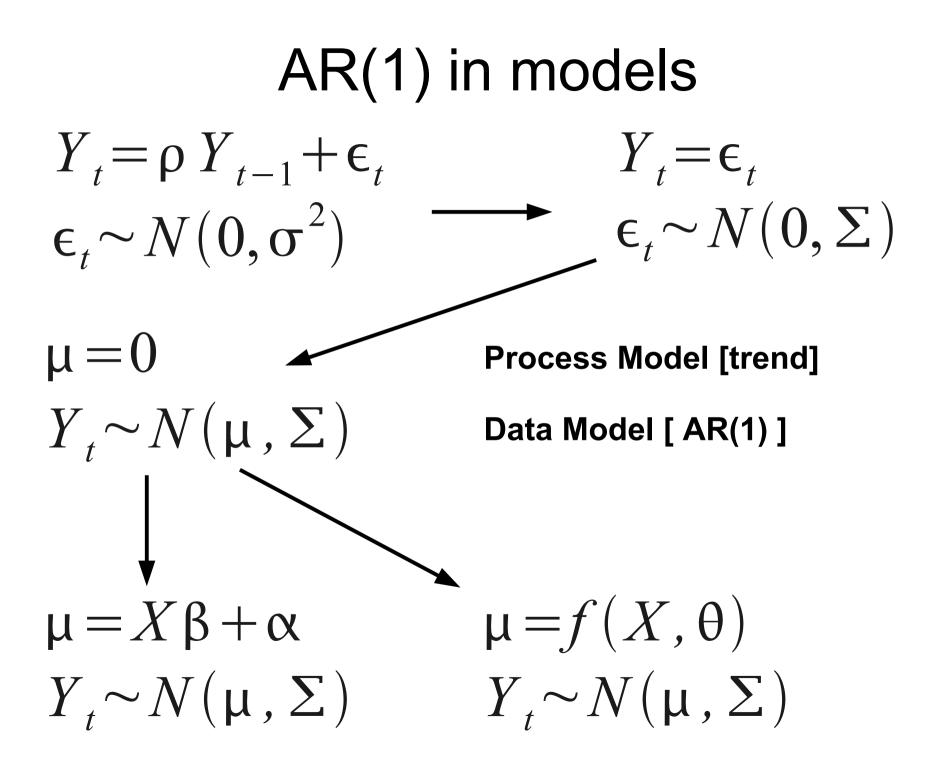
$$\gamma_s = \sigma^2 \frac{\rho^s}{1 - \rho^2}$$

Covariance matrices

- If we have a time series $\dots Y_{t-2} Y_{t-1} Y_t Y_{t+1} Y_{t+2} \dots$
- The covariance with Y_t is $\begin{array}{c} \cdots & \gamma_2 & \gamma_1 & \gamma_0 & \gamma_1 & \gamma_2 & \cdots \\ \\ \hline \sigma^2 & \hline 1 - \rho^2 & \rho & 1 & \rho & \rho^2 & \cdots \end{array}$
- Can do the same calculation for every $Y_{\!_{\scriptscriptstyle \rm T}}$



Key idea: Have a model for filling in all the covariances



Moving Average Models: MA(q) $Y_{t} = \sum_{j=1}^{q} a_{j} \epsilon_{t-j} + \epsilon_{t}$

- Lags on the errors instead of the Y's
- Equivalent to regression on the residuals
- Is related to the weighted moving average approach to smoothing
 - Coefficients fit rather than assumed
- MA(q) = ARIMA(0,0,q)

$$\operatorname{ARMA}(\mathbf{p},\mathbf{q})$$
$$Y_{t} = \sum_{i=1}^{p} \rho_{i} Y_{t-i} + \epsilon_{t} + \sum_{j=1}^{q} a_{j} \epsilon_{t-j}$$

- Combines both Autoregressive and Moving Average components
- ARMA(p,q) = ARIMA(p,0,q)

Integrated Model: I(d) $\Delta^{d} Y_{t} = \epsilon_{t}$

- Models the dth difference of Y rather than modeling Y
- Simplest case assumes dth difference is stationary (mean 0, constant variance)
- As mentioned before
 - Differences approximate derivatives
 - Biologically may expect these to follow some process model (e.g. Density dependence)
- I(d) = ARIMA(0,d,0)

ARIMA(p,d,q) Autoregressive Integrated Moving Average

- General case for classic frequentist time series, work just as well in Bayesian context
- Extensible to dealing with autocor in data models
- Contains a number of important special cases
 - AR(p) = ARIMA(p,0,0)
 - -MA(q) = ARIMA(0,0,q)
 - I(d) = ARIMA(0,d,0)
 - ARMA(p,q) = ARIMA(p,0,q)
 - Gaussian white noise = ARIMA(0,0,0)

How do you set p,d,q

(pacf)

- Exploratory analyses
 - Partial Autocorrelation function
 - Differencing (diff)
 - Weighted moving average smoothing (filter)
- Model Selection
 - AIC, LRT, DIC, etc.
 - R function arima(X,c(p,d,q)) returns AIC
 - R function ar(X) automatically finds the p with the lowest AIC