State-Space Models



Bayesian State Space Model

Y =g(X |p) Data Model
X=f(X,_,0) Process Model

e Y = observed data
e X = |atent time series

* £ = process error

e » = observation error



Random Walk State Space Model

e \What are the conditional
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Random Walk State Space Model

Y Data Model
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Generality of the State Space Model

 Neither X nor Y need be Normal
« X and Y don't need to be the same type of data
e X and Y don't need to have the same time scale

» Easily handles missing data (gaps) and
irregularly spaced data

» Easily handles multiple data sources (Y's),
which don't need to be the same type or
synchronous

« Easily handles time-integrated observations

**Note: “easy” in concept not always equal to short code or fast runtime



Unequal Observation Errors

e Suppose we have an a prior reason to believe
observation errors were different in different
years

- Different methodology
- Different sample size
- QA/QC error estimate

cx—l— B+ 1 )ct)2

\/

Defining prior differently by year

T, ‘~ IG




Unequal Sample Intervals

e Option 1. Treat as missing data
- Generally applicable

e Option 2: Include time step in process model
- Problem specific solution

X=X, ,, +(r+e)At,

I



Example: Black Noddy (Anhous minutus)
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Population size (log scale)

Example: Black Noddy (Anous minutus
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Nonlinear State Space:
Density Dependence

Exponential
Nt+1:Nt°er+€t X, =X, trte,
Ricker Discrete Logistic

r[1=N,/K|+e,

N, =N,e XtH:Xt‘H”(l—Nt/K)-i-Et

K needs a positive continuous prior (e.qg.
lognormal, gamma)

» Metropolis-Hastings sampling for K



Number of moose in the forest

Number of moose in the forest

a) Moose density and logistic growth model
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Capture-Recapture

 |[ndividuals captured, marked, and released

* Over repeated censuses will recapture some
fraction of the population

* Recapture is random and <100%

 Interested in demography (survival,
reproduction, growth) and population size

* Very common with animal data



Missing Data

e Suppose an individual record consists of the
following capture data

Y. =[1,0,1,0,0]

* This is compatible with the following survival
=[1,1,1,0,0
=[1,1,1,1,0
=11,1,1,1,1]

e Don't know the exact time of death

DO know the second census was just a failure
to recapture



Missing Data

e Suppose an individual record consists of the
following capture data

Y =1[1]0/1,0,0]
* This is compatible with the following survival
=[1(11,0,0
=[1111,1,0
— 1 1 ,1 ,1 ,1 Allow estimation of capture

— probability

e Don't know the exact time of death

DO know the second census was just a failure

to recapture



Basic Mark-Recapture State Space

* Process model

P(X,=1
P(X,=1
P(X,=0
P(X =0

 Observation model

P(Y,=1
P(Y,=1
P(Y,=0

P(Y,=0

Xt: l)zpz

e Priors on p and s (e.g. Beta)

Bernoulli Survival
Probability

Bernoulli Detection
Probability



Mark Recapture State Space

Y Data Model
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Sampling

* As with previous State-Space, update state
variables sequentially based on previous X,
next X, and current Y.

- Don't need to update values if state is known
- State is binomial [0,1]

e Survival and capture probabilities are Beta-
Binomial (Gibbs)

- Don't double count dead (only die once)




Extensions

* Current model assumes p and s vary with time

e Could assume a common, time-invariant p
and/or s

e Could assume a hierarchical p and/or s

 Could make either a function of covariates
(e.g. GLMM)

Note: no |

logit(s)=ZB+x ~

/ e

Covariates Fixed effects
effects



Mark Recapture State Space

Z Yt-1 Yt /Yt+1 Data Model
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