State-Space Models
Bayesian State Space Model

\[Y_t = g(X_t | \phi) \] \hspace{1cm} \text{Data Model}

\[X_t = f(X_{t-1} | \theta) \] \hspace{1cm} \text{Process Model}

- \(Y \) = observed data
- \(X \) = latent time series
- \(\varepsilon \) = process error
- \(\omega \) = observation error
Random Walk State Space Model

- What are the conditional distributions?

\[X_t \sim N(X_{t-1}, \tau_{\text{add}}^2) \times N(X_{t+1}|X_t, \tau_{\text{add}}^2) \times N(Y_t|X_t, \tau_{\text{obs}}^2) \]

- Three special cases
 - First
 - Last
 - Missing Y

\[X_0 \sim N(X_{ic}, \tau_{IC}) \]

\[Y_t \sim N(X_t, \tau_{\text{obs}}^2) \]

\[\tau_{\text{obs}}^2 \sim IG(a_{\text{obs}}, r_{\text{obs}}) \]

\[\tau_{\text{add}}^2 \sim IG(a_{\text{add}}, r_{\text{add}}) \]
Random Walk State Space Model

Y's are conditionally independent given the X's
Prediction
Generality of the State Space Model

- Neither X nor Y need be Normal
- X and Y don't need to be the same type of data
- X and Y don't need to have the same time scale
- Easily handles missing data (gaps) and irregularly spaced data
- Easily handles multiple data sources (Y's), which don't need to be the same type or synchronous
- Easily handles time-integrated observations

Note: “easy” in concept not always equal to short code or fast runtime
Unequal Observation Errors

• Suppose we have an *a prior* reason to believe observation errors were different in different years
 - Different methodology
 - Different sample size
 - QA/QC error estimate

\[
\tau_t^2 \sim IG\left(\alpha_t + \frac{1}{2}, \beta_t + \frac{1}{2} (y_t - x_t)^2\right)
\]

Defining prior differently by year
Unequal Sample Intervals

• Option 1: Treat as missing data
 - Generally applicable
• Option 2: Include time step in process model
 - Problem specific solution

\[X_t = X_{t-\Delta t_i} + (r + \epsilon_t) \cdot \Delta t_i \]
Example: Black Noddy (*Anous minutus*)

Unequal Intervals

- Observation sd's
- Population size (log scale)
- AD year (1920-2000)
- Process sd
- Density (0-30)
- Growth rate (0-0.15 yr⁻¹)
Example: Black Noddy (*Anous minutus*)

Unequal Intervals
- Observation sd's
- Process sd

Missing Data
- Observation sd's
- Process sd

Density
- Observation, process, missing values
Nonlinear State Space: Density Dependence

Exponential

\[N_{t+1} = N_t \cdot e^{r + \epsilon_t} \quad X_{t+1} = X_t + r + \epsilon_t \]

Ricker Discrete Logistic

\[N_{t+1} = N_t \cdot e^{r \left(1 - \frac{N_t}{K}\right) + \epsilon_t} \quad X_{t+1} = X_t + r \left(1 - \frac{N_t}{K}\right) + \epsilon_t \]

- K needs a positive continuous prior (e.g. lognormal, gamma)
- Metropolis-Hastings sampling for K
Bialowieza Primeval Forest (BPF) Moose

a) Moose density and logistic growth model

b) With process and observation error

c) Sources of stochasticity
Capture-Recapture

- Individuals captured, marked, and released
- Over repeated censuses will recapture some fraction of the population
- Recapture is random and <100%
- Interested in demography (survival, reproduction, growth) and population size
- Very common with animal data
Missing Data

• Suppose an individual record consists of the following capture data
 \[Y_i = [1,0,1,0,0] \]

• This is compatible with the following survival
 \[Z_i = [1,1,1,0,0] \]
 \[Z_i = [1,1,1,1,0] \]
 \[Z_i = [1,1,1,1,1] \]

• Don't know the exact time of death

• DO know the second census was just a failure to recapture
Suppose an individual record consists of the following capture data:

\[Y_i = [1, 0, 1, 0, 0] \]

This is compatible with the following survival data:

\[Z_i = [1, 1, 1, 0, 0] \]
\[Z_i = [1, 1, 1, 1, 0] \]
\[Z_i = [1, 1, 1, 1, 1] \]

Don't know the exact time of death.

DO know the second census was just a failure to recapture.
Basic Mark-Recapture State Space

• Process model

\[P(X_t = 1|X_{t-1} = 1) = s_t \]
\[P(X_t = 1|X_{t-1} = 0) = 0 \]
\[P(X_t = 0|X_{t-1} = 1) = 1 - s_t \]
\[P(X_t = 0|X_{t-1} = 0) = 1 \]

Bernoulli Survival Probability

• Observation model

\[P(Y_t = 1|X_t = 1) = p_t \]
\[P(Y_t = 1|X_t = 0) = 0 \]
\[P(Y_t = 0|X_t = 0) = 1 \]
\[P(Y_t = 0|X_t = 1) = 1 - p_t \]

Bernoulli Detection Probability

• Priors on \(p \) and \(s \) (e.g. Beta)
Mark Recapture State Space

Data Model

Process Model

Parameter Model
Sampling

- As with previous State-Space, update state variables sequentially based on previous X, next X, and current Y.
 - Don't need to update values if state is known
 - State is binomial [0,1]
- Survival and capture probabilities are Beta-Binomial (Gibbs)
 - Don't double count dead (only die once)
Extensions

- Current model assumes p and s vary with time
- Could assume a common, time-invariant p and/or s
- Could assume a hierarchical p and/or s
- Could make either a function of covariates (e.g. GLMM)

\[
\text{logit}(s) = Z \beta + \alpha
\]

Note: no J
Mark Recapture State Space

Data Model

Process Model

Parameter Model

Hyperparameter