State-Space Models

Bayesian State Space Model

$$Y_{t} = g(X_{t}|\phi)$$
$$X_{t} = f(X_{t-1}|\theta)$$

Data Model Process Model

- Y = observed data
- X = <u>latent</u> time series
- ϵ = process error
- ω = observation error

Random Walk State Space Model

• What are the conditional distributions?

$$X_{t} \sim N(X_{t}|X_{t-1}, \tau_{add}^{2}) \times N(X_{t+1}|X_{t}, \tau_{add}^{2}) \times N(Y_{t}|X_{t}, \tau_{add}^{2}) \times N(Y_{t}|X_{t}, \tau_{obs}^{2})$$

- Three special cases
 - First
 - Last
 - Missing Y

 $X_t \sim N(X_{t-1}, \tau_{add}^2)$ $Y_t \sim N(X_t, \tau_{obs}^2)$ $\tau_{obs}^2 \sim IG(a_{obs}, r_{obs})$ $\tau_{add}^2 \sim IG(a_{add}, r_{add})$ $X_0 \sim N(X_{ic}, \tau_{IC})$

Random Walk State Space Model

Y's are conditionally independent given the X's

log(density)

Generality of the State Space Model

- Neither X nor Y need be Normal
- X and Y don't need to be the same type of data
- X and Y don't need to have the same time scale
- Easily handles missing data (gaps) and irregularly spaced data
- Easily handles multiple data sources (Y's), which don't need to be the same type or synchronous
- Easily handles time-integrated observations

**Note: "easy" in concept not always equal to short code or fast runtime

Unequal Observation Errors

- Suppose we have an *a prior* reason to believe observation errors were different in different years
 - Different methodology
 - Different sample size
 - QA/QC error estimate

$$\tau_t^2 \sim IG\left(\alpha_t + \frac{1}{2}, \beta_t + \frac{1}{2}(y_t - x_t)^2\right)$$

Defining prior differently by year

Unequal Sample Intervals

- Option 1: Treat as missing data
 - Generally applicable
- Option 2: Include time step in process model
 - Problem specific solution

$$X_t = X_{t-\Delta t_i} + (r + \epsilon_t) \cdot \Delta t_i$$

Example: Black Noddy (Anous minutus)

Example: Black Noddy (Anous minutus)

Nonlinear State Space: Density Dependence

Exponential

$$N_{t+1} = N_t \cdot e^{r+\epsilon_t} \qquad X_{t+1} = X_t + r + \epsilon_t$$

Ricker Discrete Logistic

$$N_{t+1} = N_t \cdot e^{r(1 - N_t/K) + \epsilon_t} \qquad X_{t+1} = X_t + r(1 - N_t/K) + \epsilon_t$$

- K needs a positive continuous prior (e.g. lognormal, gamma)
- Metropolis-Hastings sampling for K

Capture-Recapture

- Individuals captured, marked, and released
- Over repeated censuses will recapture some fraction of the population
- Recapture is random and <100%
- Interested in demography (survival, reproduction, growth) and population size
- Very common with animal data

Missing Data

- Suppose an individual record consists of the following capture data $Y_i = [1,0,1,0,0]$
- This is compatible with the following survival $Z_i = [1,1,1,0,0]$ $Z_i = [1,1,1,1,0]$ $Z_i = [1,1,1,1,1]$
- Don't know the exact time of death
- DO know the second census was just a failure to recapture

Missing Data

- Suppose an individual record consists of the following capture data $Y_i = [1 \ 0, 1, 0, 0]$
- This is compatible with the following survival $Z_i = [1 \ 1, 1, 0, 0]$ $Z_i = [1 \ 1, 1, 1, 0]$ $Z_i = [1 \ 1, 1, 1, 1]$ Allow estimation of capture probability
- Don't know the exact time of death
- DO know the second census was just a failure to recapture

Basic Mark-Recapture State Space

Process model

$$P(X_{t}=1|X_{t-1}=1)=s_{t}$$

$$P(X_{t}=1|X_{t-1}=0)=0$$

$$P(X_{t}=0|X_{t-1}=1)=1-s_{t}$$

$$P(X_{t}=0|X_{t-1}=0)=1$$

Bernoulli Survival Probability

Observation model

$$P(Y_{t}=1|X_{t}=1)=p_{t}$$

$$P(Y_{t}=1|X_{t}=0)=0$$

$$P(Y_{t}=0|X_{t}=0)=1$$

$$P(Y_{t}=0|X_{t}=1)=1-p_{t}$$

• Priors on p and s (e.g. Beta)

Bernoulli Detection Probability

Mark Recapture State Space

Sampling

- As with previous State-Space, update state variables sequentially based on previous X, next X, and current Y.
 - Don't need to update values if state is known
 - State is binomial [0,1]
- Survival and capture probabilities are Beta-Binomial (Gibbs)
 - Don't double count dead (only die once)

Extensions

- Current model assumes p and s vary with time
- Could assume a common, time-invariant p and/or s
- Could assume a hierarchical p and/or s
- Could make either a function of covariates (e.g. GLMM)

Mark Recapture State Space

