Hierarchical Bayes Z



Hierarchical Models

* Model variability in the parameters of a
model

» Partition variability more explicitly into
multiple terms

» Borrow strength across data sets

» Details usually in the SUBSCRIPTS
* Hierarchical with respect to parameters
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Random Effects Linear Model
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Why bother?
Impacts on inference...




Start Simple

Progressively
Add Complexity



Example: Tree Allometries
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ABSTRACT

There is growing recognition of the role of mechanistic scaling laws in shaping ecological pattern and
process. While such theoretical relationships explain much of the variation across large scales, at any
particular scale there is important residual variation that is left unexplained among species, among
individuals within a species, and within individuals themselves. Key questions remain on what explains
this variability and how we can apply this information in practice, in particular to produce estimates in
high-diversity systems with many rare and under-sampled species. We apply hierarchical Bayes
statistical techniques to data on crown geometry from diverse temperate forests in order to
simultaneously model the differences within and among species. We find that tree height, canopy
depth, and canopy radius are affected by both successional stage and wood mechanical strength, while
tree height conforms to the predicted 2/3 power relationship. Furthermore, we show that hierarchical
modeling allows us to constrain the allometries of rare species much more than traditional methods.
Finally, crown radius was shown to vary substantially more within individuals than among individuals or
species, suggesting that the capacity for local light foraging and crown plasticity exerts the dominant
control on tree crowns.

© 2008 Elsevier B.V, All rights reserved.




Motivation

» Allometric relationships commonly fit for both
theoretical (scaling law) and practical
(prediction) purposes

 Biomass allometries critical to terrestrial carbon
budget

* Very difficult to fit site and species specific
relationships in high diversity forests

« Often resort to “global” allometries

- Introduce bias, not averaged out w/ Ilg sample

o Little attention to causes of variability across
species



e Power law
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Frequency

10

Samples per Species

Challenge of Rare Species:

Mean = 32

Median = 18

6 species with only 3-5
observations
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Hierarchical Model

 Based both on theory and observation, the
allometric relationships across species are very
similar

* Treat the regression parameters as coming

from a common process, but with “random”
species to species variability



Hierarchical Linear Model
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* Model extended to
multivariate case

Y =[H,8,R]

e Fit three response H
variables
simultaneously

 Assess hierarchical
covariance between
the three response
variables

0=logit(D/H)



Canopy Radius
r, ~N(r;, DBH-0%)

* Tree crowns are rarely round

* Field data measured 2-8 separate crown radii
per tree

 Rather than simply average these values a
prior, treated R as a latent variable similar to
the errors in variables model

 Heteroskedastic

» Allowed partitioning of crown variability within
individuals, among individuals within a species,
and across species
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Hierarchical Covariates

* \What factors affect the variability among
species in their allometric relationships?

B.~N,(B,t°I)

Y
B.~N,(ZB,t’I)

« Z = matrix of across species covariates

- Shade tolerance, wood strength, angio/gymno



SHADE TOLERANCE WOOD STRENGTH
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Prediction

 Hierarchical model structure would allow one to
make predictions about an unobserved species

* Those predictions could be refined by knowing
the hierarchical covariates

» Posterior for new species could be updated with
a relatively small number of observations

» Structure could easily be extended to other
forms of dependence (phylogenetic constraint,
site covariates, etc.)



Summary

* Final Allometry model included

- Multivariate Hierarchical linear model
- Hierarchical covariates
- Heteroskedasticity in radius

- Latent variables/Errors in variables on radius
- Borrowing strength / highly unbalanced data
- Inference on rare species
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