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Hierarchical Models

● Model variability in the parameters of a
model

● Partition variability more explicitly into
multiple terms

● Borrow strength across data sets

● Details usually in the SUBSCRIPTS
● Hierarchical with respect to parameters
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Random Effects Linear Model
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Why bother?
Impacts on inference...



  

Start Simple

Progressively 
Add Complexity



  

Example: Tree Allometries

● 53 spp
● 1691 obs
● Mixed

temperate
● North

Carolina



  



  

Motivation
● Allometric relationships commonly fit for both

theoretical (scaling law) and practical
(prediction) purposes

● Biomass allometries critical to terrestrial carbon
budget

● Very difficult to fit site and species specific
relationships in high diversity forests

● Often resort to “global” allometries
– Introduce bias, not averaged out w/ lg sample

● Little attention to causes of variability across
species



  

Process Model

● Power law

Y=aX b

log Y =01 log X 



  

Challenge of Rare Species:

Mean = 32
Median = 18
6 species with only 3-5
observations



  

Hierarchical Model

● Based both on theory and observation, the
allometric relationships across species are very
similar

● Treat the regression parameters as coming
from a common process, but with “random”
species to species variability
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H i , k~N 0,k1,kDi , k ,
2

k~N 2B ,
2 I 

2~IG s1 , s2

B~N 2B0,V B

 j
2~IG t1, t2

H i , k=log10Height i , k
Di , k=log10DBH i , k 



  

B~∏ N 2k∣B ,
2 I N 2B∣B0,V B

 j
2~∏ N  j , k∣B , j

2 IG  j
2∣t1, t2

k~∏ N H i , k∣0, k1, kDi , k ,
2

×N 2k∣B ,
2 I 

×IG  2∣s1 , s2
2~∏ N H i , k∣0,k1,kDi , k ,

2



  



  

H

R
D● Model extended to

multivariate case
Y = [H,q,R]

● Fit three response
variables
simultaneously

● Assess hierarchical
covariance between
the three response
variables

q=logit(D/H)



  

Canopy Radius

● Tree crowns are rarely round
● Field data measured 2-8 separate crown radii

per tree
● Rather than simply average these values a

prior, treated R as a latent variable similar to
the errors in variables model

● Heteroskedastic
● Allowed partitioning of crown variability within

individuals, among individuals within a species,
and across species

ri , j~N ri
* , DBH⋅ R

2 



  

Within individual

Among individuals



  

Red Oak



  

Hierarchical Covariates

● What factors affect the variability among
species in their allometric relationships?

● Z = matrix of across species covariates
– Shade tolerance, wood strength, angio/gymno

k~N 2B ,
2 I 

k~N 2Z B ,
2 I 



  

Tolerant

Intolerant

Weak
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Prediction

● Hierarchical model structure would allow one to
make predictions about an unobserved species

● Those predictions could be refined by knowing
the hierarchical covariates

● Posterior for new species could be updated with
a relatively small number of observations

● Structure could easily be extended to other
forms of dependence (phylogenetic constraint,
site covariates, etc.)



  

Summary

● Final Allometry model included
– Multivariate Hierarchical linear model

– Hierarchical covariates

– Heteroskedasticity in radius

– Latent variables/Errors in variables on radius

– Borrowing strength / highly unbalanced data

– Inference on rare species
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