Assumptions of Linear Model: Part II

- Homoskedasticity
- No error in X variables

Model variance
Errors in variables

- Error in Y variables is measurement error
- Normally distributed error
- Observations are independent
- No missing data

Latent Variables

- Variables that are not directly observed
- Values are inferred from model
- Parameter model: prior on value
- Data and Process models provide constraint

$$
p(\boldsymbol{X} \mid \ldots) \propto N\left(y \mid \beta_{0}+\beta_{1} x, \sigma^{2}\right) N\left(x^{(o)} \mid x, \tau^{2}\right) N\left(x \mid X_{0,} V_{X}\right)
$$

- MCMC integrates over (by sampling) the values the unobserved variable could take on
- Contribute to uncertainty in parameters, model
- Ignoring this variability can lead to falsely overconfident conclusions

Missing data models $\vec{y} \sim N\left(\boldsymbol{X} \vec{\beta}, \sigma^{2}\right)$

- Let's assume a standard multiple regression model (homoskedastic, no error in X)
- If some of the y's are missing
- Can just predict the distribution of those values using the model Pl
- What if some of the X's are missing
- The observed y is more likely to have come from some values of X than others

Missing Data

$\mu=X \beta$

$\vec{\beta} \sim N\left(B_{0}, V_{B}\right)$
$\sigma^{2} \sim I G\left(s_{1,} s_{2}\right)$
$x_{m i s} \sim N\left(X_{0,} V_{X}\right)$

Process model

Data model for y
Prior for beta

Prior for sigma
Prior for missing X

$$
p\left(x_{m i s} \mid \ldots\right) \propto N\left(Y \mid X \beta, \sigma^{2}\right) N\left(x \mid X_{0,} V_{X}\right)
$$

Missing Data Model

$$
\vec{y} \sim N\left(\boldsymbol{X} \vec{\beta}, \sigma^{2}\right)
$$

Conceptually within the MCMC

- Update the regression model based on ALL the rows of data conditioned on the current values of the missing data
- Update the missing data based on the current regression model and the values that all other covariates take on
- Overall, integrate over the uncertainty in missing X's
- Model uncertainty increases, but less so than if whole rows of data was dropped (partial info.)

ASSUMPTION!!

- Missing data models assume that the data is missing at random
- If data is missing SYSTEMATICALLY it can not be estimated

JAGS example: Simple Regression

model\{
\#\# priors
for(i in 1:2) \{ beta[i] ~ dnorm $(0,0.001)\}$
sigma ~ dgamma(0.1,0.1)
for(i in mis) $\{x[i] \sim \operatorname{dunif}(0,10)\}$
Vector giving indices of
for(i in 1:n)\{ missing values mu[i] <- beta[1]+beta[2]*x[i]
$y[i] \sim$ dnorm(mu[i],sigma)
\}

X	Y
4.68	8.46
2.95	8.55
9.09	7.01
8.15	9.06
1.76	11.38
4.23	9.12
7.73	7.3
2.43	8.02
6.46	8.45
4.06	8.95
2.42	9.62
0.6	9.15
8.17	7.51
0.22	10.8
4.93	9.78
2.99	10.71
8.36	8.89
6.4	8.21
8.17	6.22
6.46	5.4
1.82	10.05
9.52	7.96
2.44	9.63
6.84	7.05
7.42	8.73
NA	7.5

JAGS example: Simple Regression

model\{
\#\# priors
for(i in 1:2) \{ beta[i] ~ dnorm $(0,0.001)\}$
sigma ~ dgamma(0.1,0.1)
for(i in mis) $\{x[i] \sim \operatorname{dunif}(0,10)\}$
Vector giving indices of
for(i in 1:n)\{ missing values mu[i] <- beta[1]+beta[2]*x[i]
$y[i] \sim$ dnorm(mu[i],sigma)
\}

X	Y
4.68	8.46
2.95	8.55
9.09	7.01
8.15	9.06
1.76	11.38
4.23	9.12
7.73	7.3
2.43	8.02
6.46	8.45
4.06	8.95
2.42	9.62
0.6	9.15
8.17	7.51
0.22	10.8
4.93	9.78
2.99	10.71
8.36	8.89
6.4	8.21
8.17	6.22
6.46	5.4
1.82	10.05
9.52	7.96
2.44	9.63
6.84	7.05
7.42	8.73
NA	7.5

Example

Assumptions of Linear Model

- Homoskedasticity
- No error in X variables
- No missing data

Model variance
Errors in variables
Missing data model

- Normally distributed error
- Error in Y variables is measurement error
- Observations are independent

Generalized Linear Models

- Retains linear function
- Allows for alternate PDFs to be used in likelihood
- However, with many non-Normal PDFs the range of the model parameters does not allow a linear function to be used safely
- Pois(λ): $\lambda>0$
- Binom(n, θ) $0<\theta<1$
- Typically a link function is used to relate linear model to PDF

Link Functions

- "Canonical" Link Functions

Distribution	Link Name	Link Function	Mean Function
Normal	Identity	$\mathrm{Xb}=\mu$	$\mu=\mathrm{Xb}$
Exponential	Inverse	$\mathrm{Xb}=\mu^{-1}$	$\mu=(\mathrm{Xb})^{-1}$
Gamma		$\mathrm{Xb}=\ln (\mu)$	$\mu=\exp (\mathrm{Xb})$
Poisson	Log	$\mathrm{X}=\exp (X b)$	
Binomial	Logit	$X b=\ln \left(\frac{\mu}{1-\mu}\right)$	$\mu=\frac{\exp (X b)}{1+\exp }$
Multinomial			

- Can use most any function as a link function but may only be valid over a restricted range
- Many are technically nonlinear functions

$$
\text { Logit } \quad X b=\ln \left(\frac{\mu}{1-\mu}\right)
$$

- Interpretation: Log of the ODDS RATIO
- logit(0.5) = 0.0

Logistic Regression

- Common model for the analysis of boolean data (0/1, True/False, Present/Absent)
- Assumes a Bernoulli likelihood
- Bern $(\theta)=\operatorname{Binom}(1, \theta)$
- Likelihood specification

$$
\begin{array}{ll}
y \sim \operatorname{Bern}(\theta) & \text { Data Model } \\
\operatorname{logit}(\theta)=X \beta & \text { Process Model }
\end{array}
$$

- Bayesian

$$
\beta \sim N\left(B_{0,} V_{B}\right)
$$

Parameter Model

Logistic Regression

$$
\vec{y} \sim \operatorname{Binom}\left(1, \operatorname{logit}^{-1}(\boldsymbol{X} \overrightarrow{\boldsymbol{\beta}})\right)
$$

Logistic Regression in R

- Option 1 - built in function
glm($\mathrm{y} \sim \mathrm{x}$, family $=$ binomial(link="logit") $)$
- Option 2 - homebrew

InL = function(beta)\{
-dbinom($\mathrm{y}, 1$, , logit(beta[0] + beta[1]*x),log=T)
\}

Call:
glm(formula $=y \sim x$, family $=\operatorname{binomial()})$
Deviance Residuals:
Min 1Q Median 3Q Max
$-2.3138-0.6560-0.2362 \quad 0.6169 \quad 2.4143$
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -3.85078 $0.48091-8.0071 .17 \mathrm{e}-15^{* * *}$
$x \quad 0.73874 \quad 0.08779 \quad 8.415<2 e-16$ ***

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 345.79 on 249 degrees of freedom Residual deviance: 209.40 on 248 degrees of freedom AIC: 213.40

Alternative link functions

- "probit" - Normal CDF
- "cauchit" - Cauchy CDF
- "log" -- $\mu=\exp (X \beta)$
- "cloglog" - Complimentary log-log
- Asymmetric, often used for high or low probabilities

$$
\mu=1-\exp (-\exp (X \beta))
$$

- If you code yourself, any function that projects from Real to $(0,1)$

Coming next...

- GLM
- Bayesian Logistic
- Poisson Regression
- Multinomial
- Continuing our exploration of relaxing the assumptions of linear models

