Linear Models

- Variety of linear models
- MLE derivation of parameters and se's [ref]
- Comparison to Bayesian
- Assumptions of linear models
- Relaxing these assumptions

Linear models

- Statistically, a model is judged based on whether it is linear or not with respect to the PARAMETERS

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x_{1} \\
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} \\
& y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2} \\
& y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} \cdot x_{2} \\
& y=\beta_{0}+\beta_{1} \ln \left(x_{1}\right)+\beta_{2} \exp \left(x_{2}\right) \\
& y=\beta_{0}+\beta_{1} I(\text { TRTI })+\beta_{2} I(\text { TRT } 2)
\end{aligned}
$$

Recall for simple linear model

$$
\begin{aligned}
& y=\beta_{0}+\beta_{1} x+\epsilon \\
& \beta_{1}=\frac{\operatorname{cov}[x, y]}{\operatorname{var}[x]} \\
& \beta_{0}=\bar{y}-\beta_{1} \bar{x} \\
& \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
\end{aligned}
$$

Parameter Cl by Fisher Information

$$
\begin{gathered}
\ln L=-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)-\sum \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{2 \sigma^{2}} \\
\frac{\partial \ln L}{\partial \beta_{0}}=\frac{1}{\sigma^{2}} \sum\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=\frac{1}{\sigma^{2}}\left[\sum y_{i}-n \beta_{0}-\beta_{1} \sum x_{i}\right] \\
\frac{\partial \ln L}{\partial \beta_{1}}=\frac{1}{\sigma^{2}} \sum x_{i}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right) \\
=\frac{1}{\sigma^{2}}\left[\sum x_{i} y_{i}-\beta_{0} \sum x_{i}-\beta_{1} \sum x_{i}^{2}\right]
\end{gathered}
$$

$$
\frac{\partial \ln L}{\partial \beta_{0}}=\frac{1}{\sigma^{2}}\left[\sum y_{i}-n \beta_{0}-\beta_{1} \sum x_{i}\right]
$$

From our MLE estimator
$\frac{\partial^{2} \ln L}{\partial \beta_{0}^{2}}=-\frac{1}{\sigma^{2}}\left[n+\frac{\partial \beta_{1}}{\partial \beta_{0}} \sum x_{i}\right]$
$\frac{\partial^{2} \ln L}{\partial \beta_{0}^{2}}=-\frac{n}{\sigma^{2}}\left[1-\frac{\bar{x}^{2}}{\overline{x^{2}}}\right]$
$\frac{\partial^{2} \ln L}{\partial \beta_{0}^{2}}=-\frac{n}{\sigma^{2}}\left[\frac{\overline{x^{2}}-\bar{x}^{2}}{\overline{x^{2}}}\right]$
$\frac{\partial^{2} \ln L}{\partial \beta_{0}^{2}}=\frac{-n \operatorname{var}[x]}{\sigma^{2} \overline{x^{2}}}$
$\beta_{1}=\frac{\overline{x y}-\beta_{0} \bar{x}}{\overline{x^{2}}}$
$\frac{\partial \beta_{1}}{\partial \beta_{0}}=\frac{-\bar{x}}{\overline{x^{2}}}$
$s e_{\beta_{0}}=\frac{1}{\sqrt{I_{\beta_{0}}}}$

$\frac{\partial \ln L}{\partial \beta_{1}}=\frac{1}{\sigma^{2}}\left[\sum x_{i} y_{i}-\beta_{0} \sum x_{i}-\beta_{1} \sum x_{i}^{2}\right]$
$\frac{\partial^{2} \ln L}{\partial \beta_{1}^{2}}=\frac{1}{\sigma^{2}}\left[\frac{-\partial \beta_{0}}{\partial \beta_{1}} \sum x_{i}-\sum x_{i}^{2}\right]$
$\frac{\partial^{2} \ln L}{\partial \beta_{1}^{2}}=\frac{1}{\sigma^{2}}\left[\bar{x} \sum x_{i}-\sum x_{i}^{2}\right]$

$$
\begin{aligned}
& \beta_{0}=\bar{y}-\beta_{1} \bar{x} \\
& \frac{\partial \beta_{0}}{\partial \beta_{1}}=-\bar{x}
\end{aligned}
$$

$$
\frac{\partial^{2} \ln L}{\partial \beta_{1}^{2}}=-\frac{n}{\sigma^{2}} \operatorname{var}[x]
$$

$$
\operatorname{se}_{\beta_{1}}=\frac{\sigma}{\sqrt{n v a r}[x]}
$$

Multiple Regression via MLE

- Recall from our Bayesian derivation that we can express the regression likelihood in matrix form

$$
\begin{gathered}
\vec{y} \mid \vec{\beta}, \sigma^{2} \sim N\left(\boldsymbol{X} \vec{\beta}, \sigma^{2}\right) \\
L \propto \sigma^{-n} \exp \left[\frac{-(y-\boldsymbol{X} \vec{\beta})^{T}(y-\boldsymbol{X} \vec{\beta})}{2 \sigma^{2}}\right] \\
\ln L \propto-n \ln (\sigma)-\frac{(y-\boldsymbol{X} \vec{\beta})^{T}(y-\boldsymbol{X} \vec{\beta})}{2 \sigma^{2}} \\
\ln L \propto-n \ln (\sigma)-\frac{1}{2 \sigma^{2}}\left[y^{T} y-y^{T} X \beta-\beta^{T} X^{T} y+\beta^{T} X^{T} X \beta\right]
\end{gathered}
$$

$\ln L \propto-n \ln (\sigma)-\frac{1}{2 \sigma^{2}}\left[y^{T} y-y^{T} X \beta-\beta^{T} X^{T} y+\beta^{T} X^{T} X \beta\right]$
Vector derivative properties

$$
\begin{aligned}
& \frac{\partial A \beta}{\partial \beta}=\frac{\partial \beta^{T} A}{\partial \beta^{T}}=A \quad \frac{\partial \beta^{T} A \beta}{\partial \beta}=\beta^{T} A^{T}+\beta^{T} A \\
& \frac{\partial \ln L}{\partial \beta} \propto \frac{-1}{2 \sigma^{2}}\left[-2 y^{T} X+2 \beta^{T} X^{T} X\right]=0 \\
& y^{T} X=\beta^{T} X^{T} X \\
& X^{T} y=X^{T} X \beta \\
& \beta=\left(X^{T} X\right)^{-1} X^{T} y \quad \beta_{1}=\frac{\operatorname{cov}[x, y]}{\operatorname{var}[x]}
\end{aligned}
$$

MLE vs Bayes

$$
\begin{aligned}
& \beta=\left(X^{T} X\right)^{-1} X^{T} y \\
& \sigma^{2}=(y-X \beta)^{T}(y-X \beta) / n \\
& \beta \sim N\left(\left(\sigma^{-2} X^{T} X+V_{b}^{-1}\right)^{-1}\left(\sigma^{-2} X^{T} \vec{y}+V_{b}^{-1} \vec{b}_{0}\right)\right. \\
&\left.\quad\left(\sigma^{-2} X^{T} X+V_{b}^{-1}\right)^{-1}\right)
\end{aligned},
$$

Assumptions of Linear Model

- Homoskedasticity
- No error in X variables
- Error in Y variables is measurement error
- Normally distributed error
- Observations are independent
- No missing data

Graph notation

- Focuses on relationships among parameters and data sets rather than distributions
- Can facilitate writing conditional distributions

$$
\begin{array}{c|cc|}
X \sim N\left(\mu, \sigma^{2}\right) & \mathrm{X} & \text { Data Model } \\
\mu \sim N\left(\mu_{0}, V_{\mu}\right) & \mu, \sigma^{2} & \text { Process Model } \\
\sigma^{2} \sim I G\left(s_{1}, s_{2}\right) & \mu_{0}, \mathrm{~V}_{\mathrm{I}} & \mathbf{S}_{1}, \mathrm{~S}_{2} \text { Parameter Model }
\end{array}
$$

Linear Regression

$$
\vec{y} \sim N\left(\boldsymbol{X} \vec{\beta}, \sigma^{2}\right)
$$

Heteroskedasticity

Solutions

1) Transform the data
2) Pro: No additional parameters
3) Cons: No longer modeling the original data, likelihood \& process model have different meaning, backtransformation non-trivial (Jensen's Inequality)
4) Model the variance
5) Pro: working with original data and model, no tranf.
6) Con: additional process model and parameters (and priors)

Heteroskedasticity

$$
y \sim N\left(\beta_{1}+\beta_{2} x,\left(\alpha_{1}+\alpha_{2} x\right)^{2}\right)
$$

Example: Linear varying SD

$$
y \sim N\left(\beta_{1}+\beta_{2} x,\left(\alpha_{1}+\alpha_{2} x\right)^{2}\right)
$$

Likelihood (R)

```
LnL = function(theta,x,y){
    beta = theta[1:2]
    alpha = theta[3:4] ## was sigma = theta[3]
    -sum(dnorm(y,beta[1]+beta[2]*x,alpha[1]+alpha[2]*x,log=TRUE))
}
```


Bayes (JAGS)

```
model{
    for(i in 1:2) { beta[i] ~ dnorm(0,0.001)} ## priors
    for(i in 1:2) { alpha[i] ~ dlnorm(0,0.001)} ## was prec ~ gamma(a1,a2)
    for(i in 1:n){
        prec[i] <- 1/pow(alpha[1] + alpha[2]*x[i],2)
        mu[i] <- beta[1]+beta[2]*x[i]
        y[i] ~ dnorm(mu[i],prec[i])
    }
}
```


Likelihood

Bayes

Additional thoughts on modeling variance

- Need not be linear
- Can model in terms of sd, variance, or precision
- Can vary with treatments/factors or categorical variables
- e.g. can relax the ANOVA assumptions of equal variance among treatments
- Can vary by measurement technique, sensor, etc.

Assumptions of Linear Model

- Homoskedasticity
- No error in X variables
- Error in Y variables is measurement error
- Normally distributed error
- Observations are independent
- No missing data

Errors in Variables

Errors in Variables

$$
\begin{aligned}
\mu=\beta_{1}+\beta_{2} x & \text { Process model } \\
y \sim N\left(\mu, \sigma^{2}\right) & \text { Data model for } \mathbf{y} \\
x^{(o)} \sim N\left(x, \tau^{2}\right) & \text { Data model for } \mathbf{x} \\
\vec{\beta} \sim N\left(B_{0,} V_{B}\right) & \text { Prior for beta } \\
\sigma^{2} \sim I G\left(s_{1}, s_{2}\right) & \text { Prior for sigma } \\
\tau^{2} \sim I G\left(t_{1}, t_{2}\right) & \text { Prior for tau } \\
x \sim N\left(X_{0}, V_{X}\right) & \text { Prior for } \mathbf{x}
\end{aligned}
$$

Errors in Variables

$$
\begin{aligned}
& \vec{y} \sim N\left(\boldsymbol{X} \vec{\beta}, \sigma^{2}\right) \\
& x^{(o)} \sim N\left(x, \tau^{2}\right)
\end{aligned}
$$

Full Posterior
$p\left(\vec{\beta}, \sigma^{2}, \tau^{2}, \boldsymbol{X} \mid \vec{y}, \boldsymbol{X}^{(\sigma)}\right) \propto N\left(y \mid \beta_{0}+\beta_{1} x, \sigma^{2}\right)$

$$
\begin{gathered}
N\left(x^{(o)} \mid x, \mathrm{\tau}^{2}\right) N\left(\vec{\beta} \mid B_{0}, V_{B}\right) \\
I G\left(\sigma^{2} \mid s_{1}, s_{2}\right) I G\left(\mathrm{\tau}^{2} \mid t_{1}, t_{2}\right)
\end{gathered}
$$

Conditionals

$$
N\left(x \mid X_{0}, V_{X}\right)
$$

$p(\vec{\beta} \mid \ldots) \propto N\left(y \mid \beta_{0}+\beta_{1} x, \sigma^{2}\right) N\left(\vec{\beta} \mid B_{0}, V_{B}\right)$
$p\left(\sigma^{2} \mid \ldots\right) \propto N\left(y \mid \beta_{0}+\beta_{1} x, \sigma^{2}\right) I G\left(\sigma^{2} \mid s_{1,} s_{2}\right)$
$p\left(\mathrm{\tau}^{2} \mid \ldots\right) \propto N\left(x^{(o)} \mid x, \mathrm{~T}^{2}\right) I G\left(\mathrm{~T}^{2} \mid t_{1}, t_{2}\right)$
$p(\boldsymbol{X} \mid \ldots) \propto N\left(x^{(o)} \mid x, \tau^{2}\right) N\left(y \mid \beta_{0}+\beta_{1} x, \sigma^{2}\right) N\left(x \mid X_{0,} V_{X}\right)$

Conceptually within the MCMC

- Update the regression model given the current values of X
- Update the observation error in X based on the difference between the current and observed values of X
- Update the values of X based on the observed values of X and the regression model
- Overall, integrate over the possible values of X

```
model{
    ## priors
    for(i in 1:2) { beta[i] ~ dnorm(0,0.001)}
    sigma ~ dgamma(0.1,0.1)
    tau ~ dgamma(0.1,0.1)
    for(i in 1:n) {x[i] ~ dunif(0,10)}
```

 for(i in 1:n)\{
 xo[i] ~ dnorm(x[i],tau)
 mu[i] <- beta[1]+beta[2]*x[i]
 \(y[i] \sim\) dnorm(mu[i],sigma)
 \}
 Trace of sigma

Trace of tau

Density of sigma

Density of tau

Trace of $\mathrm{xt}[2]$

Trace of $\mathrm{xt}[3]$

Density of $x t[2]$

Density of $x t[3]$

Additional Thoughts on EIV

$$
x^{(o)} \sim g(x \mid \theta)
$$

- Errors in X's need not be Normal
- Errors need not be additive
- Can account for known biases

$$
x^{(o)} \sim N\left(\alpha_{0}+\alpha_{1} x, \mathrm{~T}^{2}\right)
$$

Additional Thoughts on EIV

$$
x^{(o)} \sim g(x \mid \theta)
$$

- Errors in X's need not be Normal
- Errors need not be additive
- Can account for known biases

$$
x^{(o)} \sim N\left(\alpha_{0}+\alpha_{1} x, \tau^{2}\right)
$$

- Observed data can be a different type (proxy)
- Very useful to have informative priors

Calibration

Growth Response to Moisture

TDR

Growth Response to Moisture

Latent Variables

- Variables that are not directly observed
- Values are inferred from model
- Parameter model: prior on value
- Data and Process models provide constraint
$p(\boldsymbol{X} \mid \ldots) \propto N\left(y \mid \beta_{0}+\beta_{1} x, \sigma^{2}\right) N\left(x^{(o)} \mid x, \tau^{2}\right) N\left(x \mid X_{0,} V_{X}\right)$
- MCMC integrates over (by sampling) the values the unobserved variable could take on
- Contribute to uncertainty in parameters, model
- Ignoring this variability can lead to falsely overconfident conclusions

Assumptions of Linear Model

- Homoskedasticity
- No error in X variables
- Error in Y variables is measurement error
- Normally distributed error
- Observations are independent
- No missing data

