
  

Model Selection II
● Philosophy of science and 

multiple alternative models
● Trade-offs
● Likelihood-based metrics

– Likelihood Ratio Test
– AIC

● Bayesian metrics
– DIC
– Predictive Loss



  

Model selection

● Focus on choosing between multiple competing
models rather than refuting a single null model

● How do we judge models?
– Complexity

● Number of parameters

– Uncertainty
● Model residuals
● Parameter error (identifiability)

– Data as ultimate arbiter

● “Make everything as simple as possible, but not
simpler.”  - A. Einstein 



  

Likelihood Ratio Test

● LR = L(x|q
A
) / L(x|q

B
)

● D = -2lnL(x|q
A
) - -2lnL(x|q

B
)

● The test statistic D is known to be distributed
with a c2 distribution

● Degrees of freedom = Difference in # of param.
– Overall, L increases (-lnL declines) with # of param.

– Penalizes model with more parameters

● p-val = 1-pchisq(D,df)



  

Akaike Information Criterion

● p = number of parameters in the model
● Based on information theory
● Lowest value “wins”
● No p-value

● Often expressed relative to best model, DAIC

● “Rules of thumb”
– 0-2 = similar 2-5 = weak support >5 = strong

AIC=−2 lnL2p



  

P-value

● Probability of obtaining a test statistic at least
as extreme as the one that was actually
observed, assuming that the null hypothesis is
true.

● Not  the probability that the null hypothesis is
true
– P-value can be close to zero when the posterior

probability of the null is close to 1

● Not the probability of falsely rejecting the null
hypothesis

● Not biological significance



  

Power

● Probability of correctly rejecting the null
hypothesis

● Requires that some explicit alternative
hypothesis is stated
– Parameter values

– Variance

– Sample size

● Often calculated as a function of sample size
● For complex models, calculate through

simulation



  



  

Generic Example
LnL.A = function(theta){

-sum(dnorm(y,f(x,theta),sd)))
}
lnL.0 = function(mu){

-sum(dnorm(y,mu,sd))
}
for(i in 1:nsim){

Ey = f(x,theta)    ## process model
y = rnorm(N,Ey,sd)    ## data model
outA = optim(ic,lnL.A) ##fit of alternative
out0 = optim(ic,lnL.0)  ##fit of null
pval[i] = 1-pchisq(2*(outA$value-out0$value),df)

}
power = sum(pval < 0.05)/nsim



  

Example: Quadratic vs Linear LRT

● Results specific to
parameter values and
sample size chosen



  

Deviance Information Criterion

● p
D
 = effective number of parameters

● Easily calculated from MCMC
● Averages over parameter distribution rather

than just single maximum
● Applicable when the number of parameters is

ambiguous
● Lowest score “wins”

DIC=DpD

D=E [D ]= 1
ng
∑ Di pD=D−D 



  

Hierarchical Models
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DIC computation

● For each MCMC iteration

– Calculate and store deviance: D(q
i
) = -2lnL(y|q

i
)

● After MCMC
– Calculate posterior means for parameters 

– Calculate D at      :
 

– Calculate

●  



 D =−2lnL y∣

D =∑ D i/ng

DIC=2D −D 

dic.samples(model, n.iter, ...)



  

Model DIC pD

flat 221.10 2.06 82.00

linear 174.40 3.12 35.30

quadratic 139.10 4.15 0.00

cubic 141.40 5.27 2.30

DDIC



  

Watanabe-Akaike (WAIC)

● Fully Bayesian
● Both elements in sum approximated using

MCMC samples 

Posterior Predictive Distribution

L



  

model  <- jags.model(mod,data = data,
n.chains=chains,quiet=TRUE)

samps  <- coda.samples(model,
variable.names=c("like"),
n.iter=iters, progress.bar="none")

   # Compute DIC

   dic    <- dic.samples(model,n.iter=iters)

   DIC  <- sum(dic$dev)+sum(dic$pen)

   # Compute WAIC

   like          <- rbind(samps[[1]],samps[[2]]) 
      # Combine samples from the two chains

   fbar          <- colMeans(like)

   Pw            <- sum(apply(log(like),2,var))

   WAIC <- -2*sum(log(fbar))+2*Pw

   # simple logistic regression model
  for(i in 1:n){
       Y[i]          ~ dbern(pi[i])
       logit(pi[i]) <- beta[1]+ X[i]*beta[2]
       like[i]      <- dbin(Y[i],pi[i],1)
        # For WAIC computation
     }
  for(j in 1:2){beta[j] ~ dnorm(0,0.01)}
   }



  

Predictive Loss

● G = total residual SS
● P = total predictive variance

● Given y
obs

, predict replicate y
rep

– i.e. predictions made for same points as
observations

● Focused on prediction, easily calc from MCMC
● Does not require model dimension

D
pl
 = G + P

∑ E [ yrep]− yobs
2

∑ var [ yrep ]



  

G/n

P/n



  

Predictive Loss Algorithm

● For every MCMC step
– Generate pseudodata at same points/covariates as

the original data (otherwise equiv. PI calc.)

● From posterior predictive distribution

– Calculate posterior mean for each point: E[y
rep

]

– Calculate residual variance for each point: Var[y
rep

]

– P = sum of Var[y
rep

] over all points

– G = ∑ E [ yrep ]− yobs
2



  

Predictive Loss: Quadratic

model P G D

flat 10065.16 8596.29 18661.45

linear 1546.03 1215.26 2761.3

quadratic 378.68 272.7 651.38

cubic 410.45 271.3 681.74

Note: sqrt of P/n and G/n are the predictive SD and residual SD respectively



  

Bayes Factor

● Require assigning a prior probability to each
model

● Hard to calculate except in limited cases
● Asymptotically tends to select too simple
● I have not seen BF used much recently

BF=
p M1∣y / p M 2∣y 
p M 1/ p M 2



  

Reversible Jump MCMC

● Considers the number of terms in a nested
model to be unknown

● Will add and remove terms within the MCMC
step

● Generates a posterior probability for each
model

● Prediction automatically averages over models
● “in fashion”



  

Bayesian Model Averaging
● Make predictions using all of your alternative

models



  

constraining a statistical
optimization problem (i.e.,
penalization or shrinkage)



  

As of now we can...

● Fit models (Likelihood and Bayes)
● Construct Confidence intervals
● Test Hypotheses / compare models
● Make predictions that propagate uncertainty

What's left?
● Exploration of common and more advance

models
– Useful approaches/models for certain types of

problems
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