Model Selection li

* Philosophy of science and
multiple alternative models

 Trade-offs
e Likelihood-based metrics

- Likelihood Ratio Test
-AlIC

 Bayesian metrics
-DIC
- Predictive Loss



Model selection

* Focus on choosing between multiple competing
models rather than refuting a single null model

 How do we judge models?
- Complexity

 Number of parameters
- Uncertainty

* Model residuals
« Parameter error (identifiability)

- Data as ultimate arbiter

* "Make everything as simple as possible, but not
simpler.” - A. Einstein



Likelihood Ratio Test
LR =L(x|8,)/L(x|8 )
D =-2InL(x|6,) - -2InL(x|0 )
The test statistic D is known to be distributed
with a x* distribution

Degrees of freedom = Difference in # of param.

- Overall, L increases (-InL declines) with # of param.
- Penalizes model with more parameters

p-val = 1-pchisq(D,df)



Akaike Information Criterion

AIC==-2[nL+2p

p = number of parameters in the model
Based on information theory

Lowest value “wins”

No p-value

Often expressed relative to best model, «AlIC
“Rules of thumb”

- 0-2 = similar 2-5 = weak support  >5 = strong



P-value

* Probability of obtaining a test statistic at least
as extreme as the one that was actually
observed, assuming that the null hypothesis is
true.

 Not the probability that the null hypothesis is
true

- P-value can be close to zero when the posterior
probability of the null is close to 1

 Not the probability of falsely rejecting the null
hypothesis

* Not biological significance



Power

Probability of correctly rejecting the null
nypothesis

Requires that some explicit alternative
nypothesis is stated

- Parameter values
- Variance
- Sample size

Often calculated as a function of sample size

For complex models, calculate through
simulation
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Power = f(effect size, SE)



Generic Example

LnL.A = function(theta){
-sum(dnorm(y,f(x,theta),sd)))

}

InL.0 = function(mu){
-sum(dnorm(y,mu,sd))

}

for(i in 1:nsim){
Ey = f(x,theta) ## process model
y = rnorm(N,Ey,sd) ## data model
outA = optim(ic,InL.A) ##fit of alternative
outO = optim(ic,InL.0) ##fit of null
pval[i] = 1-pchisq(2*(outA$Svalue-outO$value),df)

}

power = sum(pval < 0.05)/nsim



Density

Example: Quadratic vs Linear LRT
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* Results specific to
parameter values and
sample size chosen



Deviance Information Criterion
DIC=D+p,

D=E[D(6)]=— . D, pp=D—D(0)

» p, = effective number of parameters

» Easily calculated from MCMC

* Averages over parameter distribution rather
than just single maximum

* Applicable when the number of parameters is
ambiguous

e | owest score “wins”



Hierarchical Models
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DIC computation
di c. sanpl es(nodel, n.iter, ...)
 For each MCMC iteration

- Calculate and store deviance: D(ei) = -2InL(y|9i)

e After MCMC

- Calculate posterior means for parameters @
- Calculate Dat 0 : D(0)=—2InL(y|0)

- Calculate D(0)=) D(6,)/n,

» DIC=2D(0)-D(0)



Model DIC
flat 221.10
inear 174.40

quadratic 139.10

cubic 141.40

pD
2.06
3.12
4.15

5.27

ADIC

32.00

35.30

0.00

2.30



Watanabe-Akaike (WAIC)

WAIC = —QZ log/[) 10](0|y]dO + 2pp»

Posterior Predictive Distribution

n

Ph — Z varmy(lng[y,-l\-ﬂ])

=1

* Fully Bayesian

* Both elements in sum approximated using
MCMC samples



model <-jags.model(mod,data = data,

n.chains=chains,quiet=TRUE)

samps <- coda.samples(model,
variable.names=c("like"),

n.iter=iters, progress.bar="none")

# Compute DIC

dic <- dic.samples(model,n.iter=iters)
DIC <- sum(dic$dev)+sum(dicSpen)

# Compute WAIC

like <- rbind(samps][[1]],samps[[2]])
# Combine samples from the two chains

fbar <- colMeans(like)
Pw <- sum(apply(log(like),2,var))
WAIC <- -2*sum(log(fbar))+2*Pw

# simple logistic regression model
for(iin 1:n){

Y] ~ dbern(pi[i])

logit(pi[i]) <- beta[1]+ X[i]*beta[2]

like[i]  <-dbin(Y[i],pi[i],1)

# For WAIC computation

}

for(j in 1:2){beta[j] ~ dnorm(0,0.01)}
}




Predictive Loss
D = G+P

P

G = total residual SS D E[Y,0]= Voss)
P = total predictive variance > var[y,,]
Giveny_, predict replicate y

rep

- I.e. predictions made for same points as
observations

Focused on prediction, easily calc from MCMC
Does not require model dimension
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Predictive Loss Algorithm

* For every MCMC step

- Generate pseudodata at same points/covariates as
the original data (otherwise equiv. Pl calc.)

 From posterior predictive distribution

- Calculate posterior mean for each point: E[y |

rep-

— Calculate residual variance for each point: Var[y |

Trep

- P =sum of Var:yrep] over all points

-G = D (E[y,]= Vo)




Predictive Loss: Quadratic

model P G D
flat 10065.16 8596.29 18661.45
linear 1546.03 1215.26 2761.3

quadratic 37/8.68 272.7 651.38

cubic 410.45 271.3 681.74

Note: sqgrt of P/n and G/n are the predictive SD and residual SD respectively



Bayes Factor

p<M1‘J/)/p(M2|J/)

M)l p (M)

Require assigning a prior probability to each
model

Hard to calculate except in limited cases
Asymptotically tends to select too simple
| have not seen BF used much recently



Reversible Jump MCMC

e Considers the number of terms in a nested
model to be unknown

 Will add and remove terms within the MCMC
step

« Generates a posterior probability for each
model

* Prediction automatically averages over models
 “in fashion”



Bayesian Model Averaging

 Make predictions using all of your alternative
models
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1. 3. BMA predictive PDF (thick curve) and its five components {(thin curves) for the 48-h surface temperature
forecast at Packwood, WA, initialized at 0000 UTC on 12 Jun 2000. Also shown are the ensemble member forecasts
and range (solid horizontal line and bullets), the BMA 90% prediction interval (dotted lines), and the verifying
observation (solid vertical line).



constraining a statistical
optimization problem (i.e.,
penalization or shrinkage)

Out-of-sample
validation

Indicator
variable
selection

M. B. HOOTEN AND N. T. HOBBS

Regularization
¥
Cross-validation Within-sample
validation

Ecological Monographs
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As of now we can...

* Fit models (Likelihood and Bayes)

» Construct Confidence intervals

* Test Hypotheses / compare models

 Make predictions that propagate uncertainty

What's left?

* Exploration of common and more advance
models

- Useful approaches/models for certain types of
problems
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