Model Selection

* Philosophy of science and
multiple alternative models

 Trade-offs
e Likelihood-based metrics

- Likelihood Ratio Test
- AlC
» Bayesian metrics
- DIC
- Predictive Loss



“The” Scientific Method?

e Popper
- Falsification of hypotheses

* Hypotheses can not be proved, only disproved

» Stats: "Null hypothesis testing” (Fisher)

- Single hypothesis is disproved by confrontation with
the data

- Likelihood the data would have been observed if the
null hypothesis was true

- If this probability (p-value) is small enough we reject
the null



Alternative Philosophies of Science

 Kuhn — Scientific Paradigms

- Dominant paradigm used until there is so much
contradictory information that it is “overthrown”

- Requires an alternate paradigm that is “better”
* Polanyi — Republic of science

- Multiple views of the world by different scientists

- Confrontation between views and data judged by
plausibility, value, and interest

» Lakatos — Scientific research program

- Confrontation of multiple hypothesis with data as
arbitrator



Null models

» All these alternatives acknowledge

- There may be multiple alternative models

- Simple null models often scientifically trivial,
uninteresting

- Doesn't make sense to reject a model if there is not
an alternative

» Likelihood and Bayesian stats both well suited
to “judge” the contest between multiple
competing hypotheses and data



Models vs Hypotheses

Models usually more specific than hypothesis
Hypoth: Birds forage more efficiently in flocks
Models: Consumption vs Size

- Consumption proportional C:“SS

A
- Consumption saturates C= 1455
- Increases then decreases C=aSe "

“All models are wrong but some are useful”
-- George Box



Model selection

* Focus on choosing between multiple competing
models rather than refuting a single null model

 How do we judge models?
- Complexity

 Number of parameters
- Uncertainty

* Model residuals
« Parameter error (identifiability)

- Data as ultimate arbiter

* "Make everything as simple as possible, but not
simpler.” - A. Einstein
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Likelihood Ratio Test
LR =L(x|8,)/L(x|8 )
D =-2InL(x|6,) - -2InL(x|0 )
The test statistic D is known to be distributed
with a x* distribution

Degrees of freedom = Difference in # of param.

- Overall, L increases (-InL declines) with # of param.
- Penalizes model with more parameters

p-val = 1-pchisq(D,df)
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LRT pro/con

* Only applies to nested models

 Asymptotically, slightly biased toward more
complex models

* Provides a p-value

 Additional reminders:

- ALL model selection criteria require application to
the same data with same sample size

- e.g. If adding covariate Z requires rows to be
dropped because of missing values, have to drop
from the model w/o Z as well



Nested Models

 The more complex model collapses to the
simpler model when one or more of the
parameters is FIXED

« Examples:

- Weibull vs Exponential (Lab 3)
(fix c=1)

- Pine cone: combined vs AMB/ELEV (Lab 4)

- Regression: Inclusion of additional covariates
(fix slope = 0)
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Example: Polynomial

e Candidate models:

- Y =Db0

-Y=b0+Db1-x

- Y =Db0 + b1-x+ b2-x°

- Y =b0 +b1-x+b2:x*+ b3-X°
e Comparisons

- 0vs 1

- 1vs?2
- 2vs 3




e Ovs1
p=7.6e-10

e 1vs?2
p=0.00019 -,

e 2Vvs 3
p=0.9238
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Akaike Information Criterion

AIC==-2[nL+2p

p = number of parameters in the model
Based on information theory
Lowest value “wins’

Often expressed relative to best model, AAIC
No p-value
“Rules of thumb”

- 0-2 = similar 2-5 = weak support  >5 = strong
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P-value

* Probability of obtaining a test statistic at least
as extreme as the one that was actually
observed, assuming that the null hypothesis is
true.

* Not the probability that the null hypothesis is
true

- P-value can be close to zero when the posterior
probability of the null is close to 1

 Not the probability of falsely rejecting the null
hypothesis



PROBABLE CAUSE

A P value measures whether an observed result can be attributed to chance. But it cannot answer a B Chance of real effect
researcher’s real question: what are the odds that a hypothesis is correct? Those odds depend on how Chance of no real effect
strong the result was and, most importantly, on how plausibile the hypothesis is in the first place.

THE LONG SHOT THE TOSS-UP THE GOOD BET

19-to-1 odds against 1-to-1 odds 9-to-1 odds in favour
Before the experiment
The plausibility of the <
hypothesis — the odds of T 95% ClhaffflcetOf
it being true — can be no real eriec . , ) .
estlma%ed from previous & 90% 90% 90% 10%
experiments, conjectured % chance
mechanisms and other of real effect _
expert knowledge. Three ]
examples are shown here. \\ \ \

\ X \
\ \\
e 2 B g P=0.05 P=0.01 P=0.05 P=0.01 P=0.05 P=0.01
A value of 0.05 is
conventionally deemed
‘statistically significant’; a ,l / /
value of 0.01 is considered 11% / /’ /
‘very significant’. chance of , ,
real effect
After the experiment \{‘ Vv 4 v/ v Y 4
A small P value can make
a hypothesis more A
plausible, but the / . : ; :
30% 70% 71% 29% 89% 11% 96% 49, 99% 1%

difference may not be
dramatic.

899 chance of
no real effect

https://www.nature.com/news/scientific-method-statistical-errors-1.14700



Example: Southern Brown Frog

Researcher surveys a pond for the frog
From prior experience 80% detection | present
No frogs observed

If null hypothesis is frogs are absent

- P=1.0 -- Falil to reject

- Further surveys that fail to find the frog, p=1.0
If null hypothesis is frogs are present

- P =0.2 — Falil to reject
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Power

Probability of correctly rejecting the null
nypothesis

Requires that some explicit alternative
nypothesis is stated

- Parameter values
- Variance
- Sample size

Often calculated as a function of sample size

For complex models, calculate through
simulation



Generic Example

LnL.A = function(theta){
-sum(dnorm(y,f(x,theta),sd)))

}

InL.0 = function(mu){
-sum(dnorm(y,mu,sd))

}

for(i in 1:nsim){
Ey = f(x,theta) ## process model
y = rnorm(N,Ey,sd) ## data model
outA = optim(ic,InL.A) ##fit of alternative
outO = optim(ic,InL.0) ##fit of null
pval[i] = 1-pchisq(2*(outA$Svalue-outO$value),df)

}

power = sum(pval < 0.05)/nsim



Density

Example: Quadratic vs Linear LRT
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* Results specific to
parameter values and
sample size chosen



|dentifiability

« Data may not provide information on all
parameters in a model

« Often requires restructuring model
* Not fixed by collecting more data
 Parameters often “trade-off when fitting”
e Simple examples

- N(p,0°+1°)

- N(a/b,0?)
e Occur in both Likelihood and Bayes
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