Conjugacy and priors

Overview

- Priors
- Conjugacy
- Non-conjugate distributions?
- Analytically-tractable vs Numerical Solutions

Priors

- Informative
- Expert Elicitation

- Typically constructed on CDF
- Proceed from OUTSIDE inward
- Going IN \rightarrow OUT (e.g. starting with mean) - more susceptible to cognitive biases (e.g. anchor \& adjustment)
- Underestimate variance

Time to drive to Logan (min)

Priors

- Informative
- Expert Elicitation

0
Time to drive to Logan (min)

Priors

- Informative
- Uninformative
- Proper
- Integrate to 1
- Improper
- Does not have a finite integral
- Posterior may or may not integrate to 1
- Improper Posteriors
- Invalid
- Hard to catch with numerical methods
- Source of most jokes among Bayesians

Examples

- Informative
$-\mathrm{N}(0,10) \quad$ Unif(-3,3)
Uninformative but proper
$-\mathrm{N}\left(0,10^{32}\right) \quad U n i f\left(-10^{32}, 10^{32}\right) \quad B e t a(1,1)$
- Improper

$$
-\mathrm{N}(0, \infty)
$$

1
Beta(0,0)

Beta-Binomial

$$
\begin{gathered}
L=P(y \mid \theta)=\operatorname{Binom}(y \mid \theta, n) \\
\text { Prior }=P(\theta)=\operatorname{Beta}\left(\theta \mid y_{0,} n_{0}-y_{0}\right) \\
P(\theta \mid y)=\operatorname{Beta}\left(\theta \mid y+y_{0,} n+n_{0}-y-y_{0}\right)
\end{gathered}
$$

$$
\operatorname{Beta}\left(y_{0}=0, n_{0}-y_{0}=0\right) \text { is improper }
$$

$\operatorname{Beta}\left(y_{0}=1, n_{0}-y_{0}=1\right)$ is proper and flat but equivalent to two observations

Beta(0.01,0.01)

Normal-Inverse Gamma

$$
\begin{gathered}
L=p\left(\vec{y} \mid \sigma^{2}\right)=N\left(\vec{y} \mid \mu, \sigma^{2}\right) \\
\text { prior }=p\left(\sigma^{2}\right)=I G\left(\sigma^{2} \mid \alpha, \beta\right) \\
p\left(\sigma^{2} \mid y\right)=I G\left(\sigma^{2} \left\lvert\, \alpha+\frac{n}{2}\right., \beta+\frac{1}{2} \sum\left(y_{i}-\mu\right)^{2}\right)
\end{gathered}
$$

- IG(0,0) is an improper prior
- IG(1,1) is proper but equiv. to two observations
- Weak IG prior
- Mode ≈ 0
- Mean undef.
- Dangerous if data is small n or small SS
- Can occur when used as hyperpriors
- UNITS!

density.default($\mathbf{x}=\mathbf{s d}$)

density.default($\mathbf{x}=\mathbf{s d}$)

Variance

density.default(x = var)

density.default($\mathrm{x}=\mathrm{var}$)

Precision

density.default($x=$ prec)

density.default(x = prec)

Improper Posteriors

Likelihood Profile

- Likelihood integrates to infinity
- Proper prior required to ensure proper posterior

Conjugacy

- Posterior same distribution as prior
- Beta - Binomial
- Normal - Normal
- Normal - Inverse Gamma
- Allowed us to "cheat" on math by matching terms
- Analytically-tractable (though only sometime conditionally)

Other Conjugate Distributions

- Discrete
- Poisson - Gamma
- Negative Binomial - Beta
- Multinomial - Dirichlet
- Continuous
- Exponential - Gamma
- Gamma - Gamma
- Normal - Gamma
- Normal - Inverse Chi-Square
- Multivariate Normal - Wishart

Poisson - Gamma

$$
L=p(\vec{y} \mid \lambda)=\operatorname{Pois}(\vec{y} \mid \lambda) \propto \lambda^{\sum y} \exp (-n \lambda)
$$

$$
\text { prior }=p(\lambda)=\operatorname{Gamma}(\lambda \mid \alpha, \beta) \propto \lambda^{\alpha-1} \exp (-\beta \lambda)
$$

$$
p(\lambda \mid y)=\operatorname{Gamma}\left(\lambda \mid \alpha+\sum y, \beta+n\right)
$$

What about non-conjugate priors?

$$
L=p(\vec{y} \mid \lambda)=\log N\left(\vec{y} \mid \mu, \sigma^{2}\right) \propto \frac{1}{y} \exp \left(-\frac{(\ln (y)-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$$
\text { prior }=p(\mu)=\operatorname{Gamma}(\mu \mid \alpha, \beta) \propto \mu^{\alpha-1} \exp (-\beta \mu)
$$

$$
p(\mu \mid y)=\frac{\log N\left(\vec{y} \mid \mu, \sigma^{2}\right) \operatorname{Gamma}(\mu \mid \alpha, \beta)}{\int_{-\infty}^{\infty} \log N\left(\vec{y} \mid \mu, \sigma^{2}\right) \operatorname{Gamma}(\mu \mid \alpha, \beta) d \mu}
$$

$$
\begin{aligned}
& p(\mu \mid y)=\frac{\log N\left(\vec{y} \mid \mu, \sigma^{2}\right) \operatorname{Gamma}(\mu \mid \alpha, \beta)}{\int_{-\infty}^{\infty} \log N\left(\vec{y} \mid \mu, \sigma^{2}\right) \operatorname{Gamma}(\mu \mid \alpha, \beta) d \mu} \\
& p(\mu \mid y)=\frac{\exp \left(-\frac{(\ln (y)-\mu)^{2}}{2 \sigma^{2}}\right) \cdot \exp (-\beta \mu) \cdot \mu^{\alpha-1}}{\int_{-\infty}^{\infty} \exp \left(-\frac{(\ln (y)-\mu)^{2}}{2 \sigma^{2}}-\beta \mu\right) \mu^{\alpha-1} d \mu}
\end{aligned}
$$

$$
p(\mu \mid y)=\frac{\exp \left(-\frac{(\ln (y)-\mu)^{2}}{2 \sigma^{2}}\right) \cdot \exp (-\beta \mu) \cdot \mu^{\alpha-1}}{\int_{-\infty}^{\infty} \exp \left(-\frac{(\ln (y)-\mu)^{2}}{2 \sigma^{2}}-\beta \mu\right) \mu^{\alpha-1} d \mu}
$$

- Does not match any known/standard distribution
- Integral of denominator very daunting!
- How to proceed numerically???

