Bayes' Theorem

Rev. Thomas Bayes
1702-1761

Conditional Probability

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B})
\end{aligned}
$$

Conditional Probability

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B}) \\
& \operatorname{Pr}(\mathrm{A}, \mathrm{~B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{B}, \mathrm{~A})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})
\end{aligned}
$$

Conditional Probability

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B}) \\
& \operatorname{Pr}(\mathrm{A}, \mathrm{~B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{B}, \mathrm{~A})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})
\end{aligned}
$$

Conditional Probability

$\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{A}) / \operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{B}) / \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(\mathrm{A}, \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{B}, \mathrm{A})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) / \operatorname{Pr}(\mathrm{B})$

BAYES RULE

False Positives

- If a patient has a disease the test returns a positive 99% of the time
- If a patient does not have the disease, the test returns positive 5% of the time
- 0.1% of the population has the disease
- What is the probability that someone who tested positive has the disease?

Suppose A = has disease
$B=$ tested positive

$$
\begin{aligned}
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \text { not } A) P(\text { not } A)} \\
& P(A \mid B)=\frac{0.99 \cdot 0.001}{0.99 \cdot 0.001+0.05 \cdot 0.999} \\
& P(A \mid B)=\frac{0.00099}{0.00099+0.04995} \approx 0.019
\end{aligned}
$$

DID THE SUN JUST EXPLODE?

(ITS NGGT, SO WERE NOT SURE.)

What is the probability that the sun exploded??

FREQUENTIST STATISTCIAN:
BAYESIAN STATSTICIAN:

Bayes' Theorem

Posterior Likelihood Prior
$P(\theta \mid y)=$

$$
\frac{P(y \mid \theta) P(\theta)}{P(y)}
$$

$$
=\frac{P(y \mid \theta) P(\theta)}{\int_{-\infty}^{\infty} P(y \mid \theta) P(\theta) d \theta}
$$

Bayes' Billiard Table

$P(\theta \mid y) \propto P(y \mid \theta) P(\theta)$

Unif(0,1)

What is $P(y \mid \theta)$?

$$
L=P(y \mid \theta)=\operatorname{Binom}(y \mid n, \theta)
$$

$P(\theta \mid y)=\frac{\operatorname{Binom}(y \mid n, \theta) \operatorname{Unif}(\theta \mid 0,1)}{1}$ $\int_{0} \operatorname{Binom}(y \mid n, \theta) \operatorname{Unif}(\theta \mid 0,1)$

$$
P(\theta \mid y)=\frac{\binom{n}{y} \theta^{y}(1-\theta)^{n-y} \cdot 1}{\int_{0}^{1}\binom{n}{y} \theta^{y}(1-\theta)^{n-y} \cdot 1}
$$

$$
P(\theta \mid y)=\frac{\theta^{y}(1-\theta)^{n-y}}{\int_{0}^{1} \theta^{y}(1-\theta)^{n-y}}
$$

Mean? Variance? Confidence Interval?
$\operatorname{Beta}(x \mid \alpha, \beta)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1}}$
$P(\theta \mid y)=\operatorname{Beta}(x \mid y+1, n-y+1)$

- Posterior is a PDF
- θ is a random variable
- Interested in full distribution

Priors

- Makes it possible to calculate a posterior density of the model parameter rather than the likelihood of the data
- Provides a way of incorporating information that is external to the data set(s) at hand
- Inherently sequential
Previous Posterior = New Prior

Data updates the prior

Where do Priors come from?

- Uninformative / vague
- Chosen to have minimal information content, allows the likelihood to dominate the analysis
- Previous analyses
- Must be equivalent
- Variance inflation
- "The literature"
- Meta-analysis
- Expert knowledge

Where do Priors come from?

- Uninformative / vague
- Ch Prior specification must nt, allows the be "blind" to the data in
- Prev the analysis!!
- Mu
- Va No "double dipping" --
- "The leads to falsely
- Me overconfident results
- Expert knowledge

How do I choose a prior PDF?

- Analogous to how we choose the data model
- Range restrictions, shape, etc.
- Conjugacy
- A prior is conjugate to the likelihood if the posterior PDF is in the same family as the prior
- Allow for closed-form analytical solutions to either full posterior or (in multiparameter models) for the conditional distribution of that parameter.
- Modern computational methods no longer require conjugacy

Example: Tree mortality rate

- Data: observed $n=4$ trees, $y=1$ died this year

$$
L=P(y \mid \theta)=\operatorname{Binom}(y \mid \theta, n)
$$

- Prior: last year observed $\mathrm{n}_{0}=2$ trees, $\mathrm{y}_{0}=1$ died

$$
\text { Prior }=P(\theta)=\operatorname{Beta}\left(\theta \mid y_{0}, n_{0}-y_{0}\right)
$$

$P(\theta \mid y) \propto \operatorname{Binom}(y \mid \theta, n) \operatorname{Beta}\left(\theta \mid y_{0}, n_{0}-y_{0}\right)$
$P(\theta \mid y) \propto\binom{n}{y} \theta^{y}(1-\theta)^{n-y} \times \frac{\theta^{y_{0}-1}(1-\theta)^{n_{0}-y_{0}-1}}{\mathrm{~B}\left(y_{0,} n_{0}-y_{0}\right)}$
$P(\theta \mid y) \propto \theta^{y+y_{0}-1}(1-\theta)^{n-y+n_{0}-y_{0}-1}$
$P(\theta \mid y)=\operatorname{Beta}\left(\theta \mid y+y_{0,} n+n_{0}-y-y_{0}\right)$
Beta-Binomial Model

$$
\begin{aligned}
P(\theta \mid y) & =\operatorname{Beta}\left(\theta \mid y+y_{0,} n+n_{0}-y-y_{0}\right) \\
& =\operatorname{Beta}(\theta \mid 2,4)
\end{aligned}
$$

How much impact does the prior have on the analysis?

