Lesson 6 Maximum Likelihood: Part III

(plus a quick bestiary of models)

Homework

- You want to know the density of fish in a set of experimental ponds
- You observe the following counts in ten ponds: 5,6,7,3,6,5,8,4,4,3
- What is your process model?
- What is your data model?
- Solve for the analytical MLE
- What is the estimate for this population?
- Process model: $f(x)=\lambda \quad$ (density)
- Data model: $x \sim \operatorname{Pois}(\lambda)$

$$
\begin{gathered}
L=\prod \operatorname{Pois}\left(x_{i} \mid \lambda\right) \\
L \propto \prod \lambda^{x_{i}} e^{-\lambda} \\
\ln L \propto \sum x_{i} \ln (\lambda)-\sum \lambda \\
\frac{d \ln L}{d \lambda}=\frac{1}{\lambda} \sum x_{i}-n=0 \\
\lambda=\frac{1}{n} \sum x_{i}=\bar{x}
\end{gathered}
$$

How the likelihood is constructed

- $L=\operatorname{Pr}($ data|model parameters)
- How is the data modeled?
- What type of data?
- What process generated this data?
- What distributions are an appropriate description of the data?
- How is the process modeled?
- Each analysis should be approached individually
- Problem solving, creativity

How is the data modeled?

- What type of data is it:
- Continuous
- Integer / Count
- Boolean (0/1)
- Factor / categorical
- Are there range restrictions on the data?
- Are negative values allowed?
- Is there an upper bound?
- Are the observed data near the bounds?

How is the data modeled?

- What are the dominant sources of variability in the data?
- Observation/measurement error
- Process variability
- Space
- Time
- Individual/Site/Species
- Random
- Missing data

How is the data modeled?

- Are there multiple processes involved?
- Zero-inflated data
- $\operatorname{Pr}($ abundance|present $) \operatorname{Pr}($ present $)$
- Are there multiple types or sources of data?
- Tree growth: tree rings + DBH
- Tree fecundity: cone counts + seed trap
- Tree crown: remote sensing + model + crown class
- Is the process observed directly or inferred?

How is the process modeled?

- Constant mean
- Multiple means by factor (ANOVA)
- As a function of covariates
- Linear models
- Generalized linear models
- Nonlinear models
- Hierarchical models
- Mechanistic models

Note: Will shy away from "data mining" models except for EDA: regression trees, splines, neural networks, etc.

A quick beastiary of functions

- Polynomials
- Piecewise polynomials
- Rational (ratio based)
- Exponential based
- Power-based
- Sometimes chosen for mechanistic reasons, sometimes because they "fit right"

Supplemental reading: Bolker Ch 3

Polynomial

- Linear with respect to the model parameters
- Taylor series: Can approximate any smooth continuous function

hockey stick:
$f(x)=a x$ if $x<s_{1}$
$=a s_{1}$ if $x>s_{1}$

general piecewise linear:
$f(x)=a x$ if $x<s_{1}$
$=\mathrm{as}_{1}-\mathrm{b}\left(\mathrm{x}-\mathrm{s}_{1}\right)$ if $\mathrm{x}>\mathrm{s}_{1}$

threshold:

$$
\begin{aligned}
f(x) & =a_{1} \text { if } x<s_{1} \\
& =a_{2} \text { if } x>s_{1}
\end{aligned}
$$

Piecewise

- AKA change point analysis

Figure 7: Piecewise polynomial functions: the first three (threshold, hockey stick, general piecewise linear) are all piecewise linear. Splines are piecewise cubic; the equations are complicated and usually handled by software (see ?spline and ?smooth.spline).

Figure 8: Rational functions.

Figure 9: Exponential-based functions. "M-M" in the monomolecular figure is the Michaelis-Menten function with the same asymptote and initial slope.

Power

Figure 10: Power-based functions. The lower left panel shows the Ricker function for comparison with the Shepherd and Hassell functions. The lower right shows the Michaelis-Menten function for comparison with the non-rectangular hyperbola.

Function	Range	Left end	Right end	Middle
Polynomials				
Line	$\{-\infty, \infty\}$	$\begin{aligned} & y \rightarrow \pm \infty \\ & \text { constant slope } \end{aligned}$	$y \rightarrow \pm \infty$ constant slope	monotonic
Quadratic	$\{-\infty, \infty\}$	$\begin{aligned} & y \rightarrow \pm \infty \\ & \text { accelerating } \end{aligned}$	$\begin{aligned} & y \rightarrow \pm \infty, \\ & \text { accelerating } \end{aligned}$	single max/min
Cubic	$\{-\infty, \infty\}$	$\begin{aligned} & y \rightarrow \pm \infty, \\ & \text { accelerating } \end{aligned}$	$\begin{aligned} & y \rightarrow \pm \infty, \\ & \text { accelerating } \end{aligned}$	up to $2 \mathrm{max} / \mathrm{min}$
Piecewise polynomials				
Threshold	$\{-\infty, \infty$,	flat	flat	breakpoint
Hockey stick	$\{-\infty, \infty\}$	flat or linear	flat or linear	breakpoint
Piecewise linear	$\{-\infty, \infty\}$	linear	linear	breakpoint
Rational				
Hyperbolic	$\{0, \infty\}$	$\begin{aligned} & y \rightarrow \infty \\ & \text { or finite } \end{aligned}$	$y \rightarrow 0$	decreasing
Michaelis-Menten	$\{0, \infty\}$	$y=0$, linear	asymptote	saturating
Holling type III	$\{0, \infty\}$	$y=0$, accelerating	asymptote	sigmoid
Holling type IV ($c<0$)	$\{0, \infty\}$	$y=0$, accelerating	asymptote	hump-shaped
Exponential-based				
Neg. exponential	$\{0, \infty\}$	y finite	$y \rightarrow 0$	decreasing
Monomolecular	$\{0, \infty\}$	$y=0$, linear	$y \rightarrow 0$	saturating
Ricker	$\{0, \infty\}$	$y=0$, linear	$y \rightarrow 0$	hump-shaped
logistic	$\{0, \infty\}$	y small, accelerating	asymptote	sigmoid
Power-based				
Power law von Bertalanffy	$\{0, \infty\}$ like logistic	$y \rightarrow 0$ or $\rightarrow \infty$	$y \rightarrow 0$ or $\rightarrow \infty$	monotonic
Gompertz	ditto			
Shepherd	like Ricker			
Hassell	ditto			
Non-rectangular hyperbola	like Michael	is-Menten		

Linear Regression

$$
\begin{gathered}
y_{i}=a_{0}+a_{1} x_{i}+\epsilon_{i} \\
\epsilon_{i} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

Linear Regression

$$
\begin{gathered}
y_{i}=a_{0}+a_{1} x_{i}+\epsilon_{i} \\
\epsilon_{i} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

- Step 1: Likelihood

$$
\begin{aligned}
L & =\prod_{i=1}^{n} N\left(y_{i} \mid a_{0}+a_{1} x_{i}, \epsilon_{i}\right) \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[\frac{-1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}\right]
\end{aligned}
$$

Intercept

$$
\begin{aligned}
L & =\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[\frac{-1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}\right] \\
\ln L & =-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
\end{aligned}
$$

Intercept

$$
\begin{aligned}
L & =\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[\frac{-1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}\right] \\
\ln L & =-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
\frac{\partial \ln L}{\partial a_{0}} & =\frac{1}{\sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)
\end{aligned}
$$

Intercept

$$
\begin{aligned}
L & =\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[\frac{-1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}\right] \\
\ln L & =-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
\frac{\partial \ln L}{\partial a_{0}} & =\frac{1}{\sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right) \\
0 & =\sum_{t=1}^{T} y_{i}-n a_{0}-\sum_{t=1}^{T} a_{1} x_{i}
\end{aligned}
$$

Intercept

$$
\begin{aligned}
L & =\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[\frac{-1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}\right] \\
\ln L & =-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
\frac{\partial \ln L}{\partial a_{0}} & =\frac{1}{\sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right) \\
0 & =\sum_{t=1}^{T} y_{i}-n a_{0}-\sum_{t=1}^{T} a_{1} x_{i} \\
0 & =\bar{y}-a_{0}-a_{1} \bar{x}
\end{aligned}
$$

Intercept

$$
\begin{aligned}
L & =\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left[\frac{-1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}\right] \\
\ln L & =-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
\frac{\partial \ln L}{\partial a_{0}} & =\frac{1}{\sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right) \\
0 & =\sum_{t=1}^{T} y_{i}-n a_{0}-\sum_{t=1}^{T} a_{1} x_{i} \\
0 & =\bar{y}-a_{0}-a_{1} \bar{x} \\
a_{0} & =\bar{y}-a_{1} \bar{x}
\end{aligned}
$$

Slope

$$
\ln L=-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

Slope

$$
\ln L=-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

$$
\frac{\partial \ln L}{\partial a_{1}}=\frac{1}{\sigma^{2}} \sum_{t=1}^{T} x_{i}\left(y_{i}-a_{0}-a_{1} x_{i}\right)
$$

Slope

$$
\ln L=-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

$$
\begin{aligned}
\frac{\partial \ln L}{\partial a_{1}} & =\frac{1}{\sigma^{2}} \sum_{t=1}^{T} x_{i}\left(y_{i}-a_{0}-a_{1} x_{i}\right) \\
0 & =\sum_{t=1}^{T} x_{i} y_{i}-\sum_{t=1}^{T} a_{0} x_{i}-\sum_{t=1}^{T} a_{1} x_{i}^{2}
\end{aligned}
$$

Slope

$$
\ln L=-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

$$
\begin{aligned}
\frac{\partial \ln L}{\partial a_{1}} & =\frac{1}{\sigma^{2}} \sum_{t=1}^{T} x_{i}\left(y_{i}-a_{0}-a_{1} x_{i}\right) \\
0 & =\sum_{t=1}^{T} x_{i} y_{i}-\sum_{t=1}^{T} a_{0} x_{i}-\sum_{t=1}^{T} a_{1} x_{i}^{2} \\
0 & =\quad \overline{x y}-a_{0} \bar{x}-a_{1} x^{2}
\end{aligned}
$$

Slope

$$
\begin{aligned}
& \ln L=-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
& \frac{\partial \ln L}{\partial a_{1}}=\frac{1}{\sigma^{2}} \sum_{t=1}^{T} x_{i}\left(y_{i}-a_{0}-a_{1} x_{i}\right) \\
& 0=\sum_{t=1}^{T} x_{i} y_{i}-\sum_{t=1}^{T} a_{0} x_{i}-\sum_{t=1}^{T} a_{1} x_{i}^{2} \\
& 0= \\
& a_{1}= \\
& \overline{x y}-a_{0} \bar{x}-a_{1} \bar{x}^{2}
\end{aligned} \quad \frac{\overline{x y}-a_{0} \bar{x}}{\overline{x^{2}}} .
$$

Combining slope and intercept

$$
\begin{aligned}
& a_{0}=\bar{y}-a_{1} \bar{x} \\
& a_{1}=\frac{\overline{x y}-a_{0} \bar{x}}{\overline{x^{2}}}
\end{aligned}
$$

Combining slope and intercept

$$
\begin{aligned}
& a_{0}=\bar{y}-a_{1} \bar{x} \\
& a_{1}=\frac{\overline{x y}-a_{0} \bar{x}}{\overline{x^{2}}}
\end{aligned}
$$

$$
a_{1}=\frac{\overline{x y}-\bar{x} \bar{y}+a_{1} \bar{x}^{2}}{\overline{x^{2}}}
$$

Combining slope and intercept

$$
\begin{aligned}
& a_{0}=\bar{y}-a_{1} \bar{x} \\
& a_{1}=\frac{\overline{x y}-a_{0} \bar{x}}{\overline{x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=\frac{\overline{x y}-\bar{x} \bar{y}+a_{1} \bar{x}^{2}}{\overline{x^{2}}} \\
& a_{1}=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}}=\frac{\operatorname{cov}[x, y]}{\operatorname{var}[x]}
\end{aligned}
$$

Combining slope and intercept

$$
\begin{aligned}
& a_{0}=\bar{y}-a_{1} \bar{x} \\
& a_{1}=\frac{\overline{x y}-a_{0} \bar{x}}{\overline{x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=\frac{\overline{x y}-\bar{x} \bar{y}+a_{1} \bar{x}^{2}}{\overline{x^{2}}} \\
& a_{1}=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}}=\frac{\operatorname{cov}[x, y]}{\operatorname{var}[x]} \\
& a_{0}=\frac{\overline{x^{2}} \bar{y}-\bar{x} \overline{x y}}{\operatorname{var}[x]}
\end{aligned}
$$

Variance

$$
\ln L=-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

Variance

$$
\begin{aligned}
\ln L & =-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
\frac{\partial \ln L}{\partial \sigma} & =-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}=0
\end{aligned}
$$

Variance

$$
\begin{gathered}
\ln L=-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
\frac{\partial \ln L}{\partial \sigma}=-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}=0 \\
\frac{n}{\sigma}=\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
\end{gathered}
$$

Variance

$$
\begin{gathered}
\ln L=-n \ln \sigma-n \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{T}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
\frac{\partial \ln L}{\partial \sigma}=-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}=0 \\
\frac{n}{\sigma}=\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2} \\
\sigma_{M L}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
\end{gathered}
$$

Matrix notation

$$
\begin{gathered}
y_{i}=\beta_{1}+\beta_{2} x_{i} \\
\vec{x}_{i} \vec{\beta}=\left[\begin{array}{ll}
x_{i 1} & x_{i 2}
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]=\beta_{1} x_{i 1}+\beta_{2} x_{i 2} \\
\text { Where } x_{11}=1
\end{gathered} \quad \begin{aligned}
& \vec{y}=\boldsymbol{X} \vec{\beta} \quad \boldsymbol{X}=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right] \quad \begin{array}{l}
\text { Design } \\
\text { Matrix }
\end{array}
\end{aligned}
$$

Design Matrices

$$
\begin{gathered}
\text { Multiple linear regression } \\
\boldsymbol{X}=\left[\begin{array}{cccc}
1 & x_{12} & \cdots & x_{1 \mathrm{k}} \\
1 & x_{22} & \cdots & x_{2 \mathrm{k}} \\
\vdots & \vdots & & \vdots \\
1 & x_{n 2} & \cdots & x_{n k}
\end{array}\right] \\
a_{1}=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}} \\
a_{0}=\frac{\overline{x^{2}} \bar{y}-\bar{x} \overline{x y}}{\operatorname{var}[x]} \longrightarrow \hat{\beta}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} y
\end{gathered}
$$

ANOVA Design Matrices

One Way Anova
3 levels, $n=6$ 3 levels, $n=6$

ANOVA

$$
\beta_{1} \quad \beta_{1}+\beta_{2} \quad \beta_{1}+\beta_{3}
$$

ANOVA Design Matrices

Two Way Anova
3 levels x 2 levels
2 reps each, n=12

-	
$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	
$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	F
$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$	
10000	C
1100	
$1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$	L1+F
1100	
$1 \begin{array}{llll}1 & 1 & 0 & 0\end{array}$	
$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	
$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	L2+F
$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	12
10010	
1 C L L F	
12	

ANOVA Design Matrices

Two Way Anova 3 levels x 2 levels
2 reps each, n=12

ANCOVA
2 levels, 1 covariate $\mathrm{n}=6$
$\left|\begin{array}{lll}1 & 0 & x_{13} \\ 1 & 0 & x_{23} \\ 1 & 0 & x_{33} \\ 1 & 1 & x_{43} \\ 1 & 1 & x_{53} \\ 1 & 1 & x_{63}\end{array}\right|$

