Lecture 4: Maximum Likelihood

Review - Common Distributions

Continuous

- Uniform
- Normal
- Lognormal
- Beta
- Exponental/Laplace
- Gamma

Discrete

- Binomial
- Bernoulli
- Poisson
- Negative Binomial
- Geometric

What are we trying to do?

- "Confronting models with data"
- How is the data modeled?
- What type of data?
- What process generated this data?
- What distributions are an appropriate description of the data?
- How is the process modeled?
- How are the parameters modeled?

Why are we trying to do this?

- Quantify states \& relationships
- What is Y ?
- How is Y related to X ?
- Test Hypotheses
- Prediction
- Decision making

How do we do this?

Likelihood

$$
L=P(X=x \mid \theta)=P(\text { data } \mid \text { model })
$$

- Probability of observing a given data point x conditional on parameter value θ
- Likelihood principle: a parameter value is more likely than another if it is the one for which the data are more probable

Maximum Likelihood

$$
L=P(X=x \mid \theta)=P(\text { data } \mid \text { model })
$$

Goal: Find the θ that maximizes L

- Step 1: Construct Likelihood
- Step 2: Maximize function
-Take Log of likelihood function
- Take derivative of function
- Set derivative = 0
- Solve for parameter

Example - Mortality Rate

- Assume mortality rate is constant $-\rho \mid$ but is an UNKNOWN we want to estimate
- a_{i} is a KNOWN time of death
$\operatorname{Pr}\left(a<a_{i}<a+\Delta a\right)=\operatorname{Pr}\binom{$ die now given that }{ plant is still alive }$\cdot \operatorname{Pr}\binom{$ plant is }{ still alive }

$$
\begin{aligned}
& \approx \rho \Delta a \times e^{-\rho a} \\
& =\operatorname{Exp}(a \mid \rho) \Delta a
\end{aligned}
$$

An Observation

- A plant is observed to die on day 10
- From this observation, what is the best estimate for ρ ?

A few things to note

- A likelihood surface is NOT a PDF
- $\operatorname{Pr}(X \mid \theta) \neq \operatorname{Pr}(\theta \mid X)$
- Does not integrate to 1
- No, you can't just normalize it
- The model parameter is being varied, not the random variable
- i.e. the x-axis is fixed, not random
- Cannot interpret surface in terms of it's mean, variance, quantiles

Maximum Likelihood

- Step 1: Write a likelihood function describing the likelihood of the observation
- Step 2: Find the value of the model parameter that maximized the likelihood

$$
\frac{d L}{d \rho}=0
$$

$$
\begin{aligned}
L & =\rho e^{-\rho a} \\
\ln L & =\ln \rho-\rho a \\
\frac{\partial \ln L}{\partial \rho} & =\frac{1}{\rho}-a=0 \\
\rho_{M L} & =\frac{1}{a}=0.1 d a y^{-1}
\end{aligned}
$$

$$
\begin{aligned}
L & =\rho e^{-\rho a} \\
\ln L & =\ln \left(\rho e^{-\rho a}\right) \\
& \ln (\rho)+\ln (\\
\frac{\partial \ln L}{\partial \rho} & =\frac{1}{\rho}-a=0 \\
& \ln (\rho)-\rho a
\end{aligned}
$$

$$
\begin{aligned}
L & =\rho e^{-\rho a} \\
\ln L & =\ln \rho-\rho a \\
\frac{\partial \ln L}{\partial \rho} & =\frac{1}{\rho}-a=0 \\
\rho_{M L} & =\frac{1}{a}=0.1 d a y^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& L=\rho e^{-\rho a} \\
& \ln L=\ln \rho-\rho a \\
& \frac{\partial \ln L}{\partial \rho}=\frac{1}{\rho}-a=0 \\
& \rho_{M L}=\frac{1}{a}=0.1 d a y^{-1} \\
& a=10
\end{aligned}
$$

b) -Log likelihood

A second data point

- Suppose a second plant dies at day 14
- Step 1: Define the likelihood

$$
\begin{array}{rlc}
L & = & \operatorname{Pr}\left(a_{1}, a_{2} \mid \rho\right) \\
& = & \operatorname{Pr}\left(a_{2} \mid a_{1}, \rho\right) \operatorname{Pr}\left(a_{1} \mid \rho\right) \\
& = & \operatorname{Pr}\left(a_{2} \mid \rho\right) \operatorname{Pr}\left(a_{1} \mid \rho\right) \\
& \propto & \operatorname{Exp}\left(a_{2} \mid \rho\right) \operatorname{Exp}\left(a_{1} \mid \rho\right)
\end{array}
$$

Assume measurements are independent

- Step 2: Find the maximum

$$
\begin{aligned}
& L=\rho e^{-\rho a_{1}} \cdot \rho e^{-\rho a_{2}} \\
& \ln L=2 \ln \rho-\rho a_{1}-\rho a_{2} \\
& \frac{\partial \ln L}{\partial \rho}= \\
& \frac{2}{\rho}-\left(a_{1}+a_{2}\right)=0 \\
& \rho_{M L}=\frac{2}{a_{1}+a_{2}}=0.0833 d a y^{-1}
\end{aligned}
$$

$$
n=1
$$

a) Likelihood function

b) -Log likelihood

$$
n=2
$$

c) Likelihood function

d) -Log likelihood

A whole data set

- Step 1: Define Likelihood

$$
L=\operatorname{Pr}\left(a_{1}, a_{2}, \cdots, a_{n} \mid \rho\right)
$$

Assume measurements are independent
$=\prod_{i=1}^{n} \operatorname{Exp}(a \mid \rho)$

- Step 2:

$$
\begin{aligned}
L & =\prod_{i=1}^{n} \rho e^{-\rho a_{i}} \\
\ln L & =\sum_{i=1}^{n}\left(\ln \rho-\rho a_{i}\right) \\
& =n \ln \rho-\rho \sum_{i=1}^{n} a_{i} \\
\frac{\partial \ln L}{\partial \rho} & =\frac{n}{\rho}-\sum_{i=1}^{n} a_{i}=0 \\
\rho_{M L} & =\frac{n}{\sum_{i=1}^{n} a_{i}}=1 / \bar{a}
\end{aligned}
$$

Find the maximum

$$
n=1
$$

$$
n=2
$$

$$
n=10
$$

FIGURE 3.2. Likelihood functions for the exponential model with three different sample sizes. Note the different scales on the vertical axes.

