Lecture 2: Probability

Jelly Beans Cause Acne!
Scientists! Investigate!

We found no link between jelly beans and acne ($p > 0.05$).

That settles that.
I hear it's only a certain color that causes it.

Scientists! But 무신종국!

We found no link between grey jelly beans and acne ($p > 0.05$).

News
Green Jelly Beans Linked to Acne!
95% Confidence

Only 5% chance of coincidence.

We found no link between peach jelly beans and acne ($p > 0.05$).

We found a link between green jelly beans and acne ($p < 0.05$).
The unifying principal for this course is statistical estimation based on **probability**.

<table>
<thead>
<tr>
<th>Statistical Estimator</th>
<th>Method of Estimation</th>
<th>Output</th>
<th>Data Complexity</th>
<th>Prior Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>Cost Function</td>
<td>Analytical Solution</td>
<td>Simple</td>
<td>No</td>
</tr>
<tr>
<td>Maximum Likelihood</td>
<td>Probability Theory</td>
<td>Numerical Optimization</td>
<td>Intermediate</td>
<td>No</td>
</tr>
<tr>
<td>Bayesian</td>
<td>Probability Theory</td>
<td>Sampling</td>
<td>Complex</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Overview

- Basic probability
 - Joint, marginal, conditional probability
 - Bayes Rule
- Random variables
- Probability distribution
 - Discrete
 - Continuous
- Moments

One could spend ½ a semester on this alone...
Example

White-breasted fruit dove *(Ptilinopus rivoli)*

Yellow-bibbed fruit dove *(Ptilinopus solomonensis)*
<table>
<thead>
<tr>
<th>Events</th>
<th>S</th>
<th>Sc</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Rc</td>
<td>18</td>
<td>3</td>
</tr>
</tbody>
</table>

Pr(A) = probability that event A occurs

Pr(R) = ?
Pr(Rc) = ?

Pr(S) = ?
Pr(Sc) = ?
<table>
<thead>
<tr>
<th>Events</th>
<th>S</th>
<th>Sc</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Rc</td>
<td>18</td>
<td>3</td>
</tr>
</tbody>
</table>

\[
\text{Pr}(A) = \text{probability that event } A \text{ occurs}
\]

\[
\begin{align*}
\text{Pr}(R) & = \frac{11}{32} \\
\text{Pr}(\text{Rc}) & = \frac{21}{32} \\
\text{Pr}(S) & = \frac{20}{32} \\
\text{Pr}(\text{Sc}) & = \frac{12}{32}
\end{align*}
\]
Joint Probability

Pr(A, B) = probability that both A and B occur

Pr(R, Sc) = ?
Pr(S, Rc) = ?
Pr(R, S) = ?
Pr(Rc, Sc) = ?

<table>
<thead>
<tr>
<th>Events</th>
<th>S</th>
<th>Sc</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2</td>
<td>9</td>
<td>Pr(R) = 11/32</td>
</tr>
<tr>
<td>Rc</td>
<td>18</td>
<td>3</td>
<td>Pr(Rc) = 21/32</td>
</tr>
<tr>
<td>Pr(S)</td>
<td>20/32</td>
<td>Pr(Sc) = 12/32</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Joint Probability

Pr(A,B) = probability that both A and B occur

Pr(R,Sc) = 9/32
Pr(S,Rc) = 18/32
Pr(R,S) = 2/32
Pr(Rc,Sc) = 3/32
\[\Pr(A \text{ or } B) = \Pr(A) + \Pr(B) - \Pr(A, B) \]
\[= 1 - \Pr(\text{neither}) \]

\[\Pr(R \text{ or } S) = ? \]
\[
\text{Pr(A or B)} = \text{Pr(A)} + \text{Pr(B)} - \text{Pr(A,B)}
\]
\[
= 1 - \text{Pr(neither)}
\]

\[
\text{Pr(R or S)} = \frac{11}{32} + \frac{20}{32} - \frac{2}{32} = \frac{29}{32}
\]
\[
= \frac{32}{32} - \frac{3}{32} = \frac{29}{32}
\]
If \(\Pr(A,B) = \Pr(A) \cdot \Pr(B) \) then \(A \) and \(B \) are independent.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Events} & S & Sc & \\
\hline
R & 2 & 9 & \Pr(R) = 11/32 \\
Rc & 18 & 3 & \Pr(Rc) = 21/32 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
& \Pr(S) = 20/32 & \Pr(Sc) = 12/32 & 32 \\
\hline
\end{array}
\]

If \(\Pr(A,B) = \Pr(A) \cdot \Pr(B) \) then \(A \) and \(B \) are independent.

\[\Pr(R,S) = \Pr(R) \cdot \Pr(S) \]
If \(\Pr(A, B) = \Pr(A) \cdot \Pr(B) \) then \(A \) and \(B \) are independent.

\[
0.0625 = 2/32 = \Pr(R, S) \neq \Pr(R) \cdot \Pr(S) = 11/32 \cdot 20/32 = 0.215
\]
Conditional Probability

\[
Pr(A \mid B) = \frac{Pr(A,B)}{Pr(B)} \quad \text{and} \quad Pr(B \mid A) = \frac{Pr(B,A)}{Pr(A)}
\]

<table>
<thead>
<tr>
<th>Events</th>
<th>S</th>
<th>Sc</th>
<th>(Pr(R) = 11/32)</th>
<th>(Pr(Rc) = 21/32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rc</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Pr(S) = 20/32)</td>
<td>(Pr(Sc) = 12/32)</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
Pr(R \mid S) = ?
\]
Conditional Probability

The conditional probability of event B given event A is given by:

$$
Pr(B \mid A) = \frac{Pr(B,A)}{Pr(A)}
$$

The conditional probability of event A given event B is given by:

$$
Pr(A \mid B) = \frac{Pr(A,B)}{Pr(B)}
$$

For the specific case of $Pr(R \mid S)$,

$$
Pr(R \mid S) = \frac{Pr(R,S)}{Pr(S)} = \frac{2/32}{20/32} = 2/20
$$
Conditional Probability

\[
\begin{align*}
\text{Pr}(B \mid A) &= \frac{\text{Pr}(B,A)}{\text{Pr}(A)} \\
\text{Pr}(A \mid B) &= \frac{\text{Pr}(A,B)}{\text{Pr}(B)} \\
\text{Pr}(S \mid R) &= \frac{\text{Pr}(S,R)}{\text{Pr}(R)} \\
&= \frac{2/32}{11/32} = \frac{2}{11}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Events</th>
<th>S</th>
<th>Sc</th>
<th>\text{Pr}(R) = 11/32</th>
<th>\text{Pr}(Rc) = 21/32</th>
<th>\text{Pr}(S) = 20/32</th>
<th>\text{Pr}(Sc) = 12/32</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rc</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Joint = Conditional \cdot Marginal

\[\Pr(B \mid A) = \frac{\Pr(B, A)}{\Pr(A)} \]

\[\Pr(B, A) = \Pr(B \mid A) \cdot \Pr(A) \]

\[\Pr(S, R) = \Pr(S \mid R) \cdot \Pr(R) \]

\[\frac{2}{32} = \frac{2}{11} \cdot \frac{11}{32} \]
Marginal Probability

\[
Pr(B) = \sum Pr(B,A_i)
\]

\[
Pr(R) = ?
\]
Marginal Probability

\[\Pr(B) = \sum \Pr(B, A_i) \]

\[\Pr(R) = \Pr(R, S) + \Pr(R, Sc) \]
\[= \frac{2}{32} + \frac{9}{32} \]
\[= \frac{11}{32} \]
Marginal Probability

\[Pr(B) = \sum Pr(B, A_i) \]

\[Pr(B) = \sum Pr(B | A_i) \cdot Pr(A_i) \]

\[Pr(R) = ? \]
Marginal Probability

\[
Pr(B) = \sum Pr(B \mid A_i) \cdot Pr(A_i)
\]

\[
Pr(R) = Pr(R \mid S) \cdot Pr(S) + Pr(R \mid Sc) \cdot Pr(Sc)
\]

\[
= 2/20 \cdot 20/32 + 9/12 \cdot 12/32
\]

\[
= 2/32 + 9/32
\]

\[
= 11/32
\]
Conditional Probability

\[\Pr(B \mid A) = \frac{\Pr(B,A)}{\Pr(A)} \]
\[\Pr(A \mid B) = \frac{\Pr(A,B)}{\Pr(B)} \]
Conditional Probability

\[Pr(B \mid A) = \frac{Pr(B,A)}{Pr(A)} \]
\[Pr(A \mid B) = \frac{Pr(A,B)}{Pr(B)} \]

\[Pr(A,B) = Pr(B \mid A) \cdot Pr(A) \]
\[Pr(B,A) = Pr(A \mid B) \cdot Pr(B) \]
Conditional Probability

Pr(B | A) = Pr(B,A) / Pr(A)
Pr(A | B) = Pr(A,B) / Pr(B)

Pr(A,B) = Pr(B | A) \cdot Pr(A)
Pr(B,A) = Pr(A | B) \cdot Pr(B)

Joint = Conditional x Marginal
Conditional Probability

\[\Pr(B \mid A) = \frac{\Pr(B,A)}{\Pr(A)} \]
\[\Pr(A \mid B) = \frac{\Pr(A,B)}{\Pr(B)} \]

\[\Pr(A,B) = \Pr(B \mid A) \cdot \Pr(A) \]
\[\Pr(B,A) = \Pr(A \mid B) \cdot \Pr(B) \]

Joint = Conditional x Marginal

Competition: Best mnemonic
Conditional Probability

\[\Pr(B \mid A) = \frac{\Pr(B,A)}{\Pr(A)} \]
\[\Pr(A \mid B) = \frac{\Pr(A,B)}{\Pr(B)} \]

\[\Pr(A,B) = \Pr(B \mid A) \cdot \Pr(A) \]
\[\Pr(B,A) = \Pr(A \mid B) \cdot \Pr(B) \]

\[\Pr(A \mid B) \cdot \Pr(B) = \Pr(B \mid A) \cdot \Pr(A) \]
Conditional Probability

Pr(B | A) = Pr(B,A) / Pr(A)
Pr(A | B) = Pr(A,B) / Pr(B)

Pr(A,B) = Pr(B | A) · Pr(A)
Pr(B,A) = Pr(A | B) · Pr(B)

Pr(A | B) · Pr(B) = Pr(B | A) · Pr(A)

Pr(A | B) = Pr(B | A) · Pr(A) / Pr(B)

BAYES RULE
Bayes Rule

\[
Pr(A \mid B) = Pr(B \mid A) \cdot Pr(A) / Pr(B)
\]

\[
Pr(R \mid S) = Pr(S \mid R) \cdot Pr(R) / Pr(S)
\]

\[
= (2/11) \cdot (11/32) / (20/32)
\]

\[
= 2/20
\]
BAYES RULE: alternate form

\[\Pr(A | B) = \Pr(B | A) \cdot \Pr(A) / \Pr(B) \]

\[\Pr(A | B) = \Pr(B | A) \cdot \Pr(A) / \sum \Pr(B, A_i) \]

\[\Pr(A|B) = \Pr(B|A) \cdot \Pr(A) / \left(\sum \Pr(B|A_i) \cdot \Pr(A_i) \right) \]

Normalizing Constant
Monty Hall Problem

\[P_1 = \frac{1}{3} \]

\[P_2 = \frac{1}{3} \]

\[P_3 = \frac{1}{3} \]
Monty Hall Problem

$P_1 \mid \text{open 3} = ?$

$P_2 \mid \text{open 3} = ?$

$P_3 \mid \text{open 3} = ?$
Monty Hall Problem

open 3 | P_1

open 3 | P_2

open 3 | P_3
Monty Hall Problem

open 3 | P_1 = 1/2

open 3 | P_2 = 1

open 3 | P_3 = 0
Monty Hall Problem

P_1 | open 3 = 1/3

P_2 | open 3 = 2/3

P_3 | open 3 = 0
Monty Hall Problem

1. Player picks car (probability 1/3)
 - Host reveals either goat
 - Switching loses.

2. Player picks Goat A (probability 1/3)
 - Host must reveal Goat B
 - Switching wins.

3. Player picks Goat B (probability 1/3)
 - Host must reveal Goat A
 - Switching wins.
\[
P(I'm \text{ near } \text{ the ocean} \mid I \text{ picked up a seashell}) = \frac{P(I \text{ picked up a seashell} \mid I'm \text{ near } \text{ the ocean}) P(I \text{ picked up a seashell})}{P(I'm \text{ near } \text{ the ocean})} \]

Statistically speaking, if you pick up a seashell and don't hold it to your ear, you can probably hear the ocean.
BAYES RULE: alternate form

\[Pr(A \mid B) = Pr(B \mid A) \cdot \frac{Pr(A)}{Pr(B)} \]

\[Pr(A \mid B) = Pr(B \mid A) \cdot Pr(A) / (\sum Pr(B \mid A) \cdot Pr(A)) \]

Factoring probabilities:

\[Pr(A,B,C) = Pr(A \mid B,C)Pr(B,C) \]

\[= Pr(A \mid B,C)P(B \mid C)Pr(C) \]
BAYES RULE: alternate form

\[
\Pr(A | B) = \Pr(B | A) \cdot \Pr(A) / \Pr(B)
\]

\[
\Pr(A|B) = \Pr(B|A) \cdot \Pr(A) / (\sum \Pr(B|A) \cdot \Pr(A))
\]

Factoring probabilities:

\[
\Pr(A,B,C) = \Pr(A|B,C)\Pr(B,C)
\]

\[
= \Pr(A|B,C)\Pr(B|C)\Pr(C)
\]

Joint = Conditional x Marginal
Random Variables

“a variable that can take on more than one value, in which the values are determined by probabilities”

\[\Pr(Z = z_k) = p_k \]

given:

\[0 \leq p_k \leq 1 \]

Random variables can be continuous or discrete
Discrete random variables

\(z_k \) can only take on discrete values (typically integers)

We can define two important and interrelated functions

probability mass function (pmf):

\[
f(z) = \Pr(Z = z_k) = p_k
\]

where \(\sum f(z) = 1 \) (if not met, is just a density fcn)

Cumulative distribution function (cdf):

\[
F(z) = \Pr(Z \leq z_k) = \sum f(z) \text{ summed up to } k
\]

\(0 \leq F(z) \leq 1 \) but can be infinite in \(z \)
Example

For the set \{1,2,3,4,5,6\}

\[f(z) = \Pr(Z = z_k) = \{1/6, 1/6, 1/6, 1/6, 1/6, 1/6\} \]

\[F(z) = \Pr(Z \leq z_k) = \{1/6, 2/6, 3/6, 4/6, 5/6, 6/6\} \]

For \(z < 1 \), \(f(z) = 0 \), \(F(z) = 0 \)

For \(z > 6 \), \(f(z) = 0 \), \(F(z) = 1 \)
Continuous Random Variables

z is Real (though can still be bound)

Cumulative distribution function (cdf):

\[F(z) = \Pr(Z \leq z) \quad \text{where} \quad 0 \leq F(z) \leq 1 \]

\[\Pr(Z = z) \text{ is infinitely small} \]

\[\Pr(z \leq Z \leq z + dz) = \Pr(Z \leq z + dz) - \Pr(Z \leq z) \]
\[= F(z + dz) - F(z) \]

Probability density function (pdf):

\[f(z) = \frac{dF}{dz} \]

\[f(z) \geq 0 \text{ but NOT bound by 1} \]
Continuous Random Variables

f is derivative of F
F is integral of f

\[Pr(z \leq Z \leq z + dz) = \int_{z}^{z+dz} f(z) \]

ANY function that meets these rules (positive, integrate to 1)

Wednesday we will be going over a number of standard number of distributions and discussing their interpretation/application.
Example: exponential distribution

\[f(z) = \lambda \exp(-\lambda z) \]

\[F(z) = 1 - \exp(-\lambda z) \]

Where \(z \geq 0 \)

What are the values of \(F(z) \) and \(f(z) \):

- At \(z = 0 \) ?
- As \(z \to \infty \) ?

What do \(F(z) \) and \(f(z) \) look like?
Exponential

$$\text{Exp}(x|\lambda) = \lambda \exp(-\lambda x)$$

At $z = 0$

$$f(z) = 0$$
$$F(z) = 0$$

As $z \to \infty$

$$f(z) = 0$$
$$F(z) = 1$$
Moments of probability distributions

\[E \left[x^n \right] = \int x^n \cdot f(x) \, dx \]

\[E[\] = \text{Expected value} \]

First moment (n=1) = mean

Example: exponential

\[E[x] = \int x \cdot f(x) \, dx = \int_0^\infty x \lambda \exp(-\lambda x) \]

\[= -x \exp(-\lambda x) \bigg|_0^\infty + \frac{1}{\lambda} \int_0^\infty \lambda \exp(-\lambda x) \]

\[E[x] = \frac{1}{\lambda} \]
Properties of means

\[E[c] = c \]

\[E[x + c] = E[x] + c \]

\[E[cx] = c \, E[x] \]

\[E[x+y] = E[x] + E[y] \]

(even if \(X \) is not independent of \(Y \))

\[E(xy) = E[x]E[Y] \quad \text{only if independent} \]

\[E[g(x)] \neq g(E[x]) \quad \text{Jensen's Inequality} \]
Central Moments

\[E\left[(x - E[x])^n \right] = \int (x - E[x])^n \cdot f(x) \, dx \]

Second Central Moment = Variance = \(\sigma^2 \)
Properties of variance

\[Var(aX) = a^2 \Var(X) \]

\[Var(X + b) = Var(X) \]

\[Var(X + Y) = Var(X) + Var(Y) + 2 \Cov(X, Y) \]

\[Var(aX + bY) = a^2 \Var(X) + b^2 \Var(Y) + 2ab \Cov(X, Y) \]

\[Var\left(\sum X\right) = \sum Var(X_i) + 2 \sum_{i<j} \Cov(X_i, X_j) \]

\[Var(X) = Var(E[X|Y]) + E[Var(X|Y)] \]
Distributions and Probability

all the same properties apply to random variables

\[Pr(A, B) \]
joint distribution

\[Pr(A|B) = \frac{Pr(A, B)}{Pr(B)} \]
conditional distribution

\[Pr(A) = \sum Pr(A|B_i) Pr(B_i) \]
marginal distribution

\[Pr(A|B) = \frac{Pr(B|A) Pr(A)}{Pr(B)} \]
Baye's Rule
Looking forward...

Use probability distributions to:

- Quantify the match between models and data
- Represent uncertainty about model parameters
- Partition sources of process variability