Lecture 2: Probability

Statistical Paradigms

	Statistical Estimator	Method of Estimation	Output	Data Complexity	Prior Info
Classical	Cost Function	Analytical Solution	Point Estimate	Simple	No
Maximum Likelihood	Probability Theory	Numerical Optimization	Point Estimate	Intermediate	No
Bayesian	Probability Theory	Sampling	Probability Distribution	Complex	Yes

The unifying principal for this course is statistical estimation based on probability

Overview

- Basic probability
- Joint, marginal, conditional probability
- Bayes Rule
- Random variables
- Probability distribution
- Discrete
- Continuous
- Moments

One could spend $1 / 2$ a semester on this alone...

Example

Events	S	Sc	
R	2	9	
Rc	18	3	

$\operatorname{Pr}(A)=$ probability that event A occurs
$\operatorname{Pr}(\mathrm{R})=$?
$\operatorname{Pr}(\mathrm{Rc})=$?
$\operatorname{Pr}(S)=?$
$\operatorname{Pr}(\mathrm{Sc})=$?

Events	S	Sc	
R	2	9	
Rc	18	3	

$\operatorname{Pr}(A)=$ probability that event A occurs
$\operatorname{Pr}(R)=11 / 32$
$\operatorname{Pr}(R c)=21 / 32$
$\operatorname{Pr}(S)=20 / 32$
$\operatorname{Pr}(S c)=12 / 32$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Joint Probability

$\operatorname{Pr}(\mathrm{A}, \mathrm{B})=$ probability that both A and B occur
$\operatorname{Pr}(\mathrm{R}, \mathrm{Sc})=$?
$\operatorname{Pr}(\mathrm{S}, \mathrm{Rc})=$?
$\operatorname{Pr}(\mathrm{R}, \mathrm{S})=$?
$\operatorname{Pr}(\mathrm{Rc}, \mathrm{Sc})=$?

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Joint Probability

$\operatorname{Pr}(\mathrm{A}, \mathrm{B})=$ probability that both A and B occur
$\operatorname{Pr}(\mathrm{R}, \mathrm{Sc})=9 / 32$
$\operatorname{Pr}(\mathrm{S}, \mathrm{Rc})=18 / 32$
$\operatorname{Pr}(R, S)=2 / 32$
$\operatorname{Pr}(\mathrm{Rc}, \mathrm{Sc})=3 / 32$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

$\operatorname{Pr}(\mathrm{A}$ or B$)=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A}, \mathrm{B})$
 $=1-\operatorname{Pr}($ neither $)$

$\operatorname{Pr}(\mathrm{R}$ or S$)=$?

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{A} \text { or } \mathrm{B}) & =\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A}, \mathrm{~B}) \\
& =1-\operatorname{Pr}(\text { neither }) \\
\operatorname{Pr}(\mathrm{R} \text { or } \mathrm{S}) & =11 / 32+20 / 32-2 / 32=29 / 32 \\
& =32 / 32-3 / 32 \quad=29 / 32
\end{aligned}
$$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

If $\operatorname{Pr}(A, B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)$ then A and B are independent

$$
\operatorname{Pr}(R, S)=\operatorname{Pr}(R) \cdot \operatorname{Pr}(S) ? ?
$$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

If $\operatorname{Pr}(A, B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)$ then A and B are independent

$0.0625=2 / 32=\operatorname{Pr}(R, S) \neq \operatorname{Pr}(R) \cdot \operatorname{Pr}(S)=11 / 32 \cdot 20 / 32=0.215$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Conditional Probability

$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=$ Probability of \mathbf{A} given \mathbf{B} occurred
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{B}) / \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B, A) / \operatorname{Pr}(A)$
$\operatorname{Pr}(\mathrm{R} \mid \mathrm{S})=?$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Conditional Probability

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})= & =\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})= & \operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B}) \\
\operatorname{Pr}(\mathrm{R} \mid \mathrm{S}) & =\operatorname{Pr}(\mathrm{R}, \mathrm{~S}) / \operatorname{Pr}(\mathrm{S}) \\
& =(2 / 32) /(20 / 32)=2 / 20
\end{aligned}
$$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Conditional Probability

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})= & =\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})= & \operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B}) \\
\operatorname{Pr}(\mathrm{S} \mid \mathrm{R}) & =\operatorname{Pr}(\mathrm{S}, \mathrm{R}) / \operatorname{Pr}(\mathrm{R}) \\
& =(2 / 32) /(11 / 32)=2 / 11
\end{aligned}
$$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Joint $=$ Conditional \cdot Marginal

$$
\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A})
$$

$$
\operatorname{Pr}(B, A)=\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)
$$

$$
\begin{gathered}
\operatorname{Pr}(S, R)=\operatorname{Pr}(S \mid R) \cdot \operatorname{Pr}(R) \\
2 / 32=(2 / 11) \cdot(11 / 32)
\end{gathered}
$$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Marginal Probability
$\operatorname{Pr}(\mathrm{B})=\Sigma \operatorname{Pr}\left(\mathrm{B}, \mathrm{A}_{\mathrm{i}}\right)$
$\operatorname{Pr}(\mathrm{R})=$?

Events	S	Sc	Marginal
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
Marginal	$\operatorname{Pr}(\mathrm{S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Marginal Probability

$$
\begin{aligned}
\operatorname{Pr}(B) & =\Sigma \operatorname{Pr}\left(B, A_{i}\right) \\
\operatorname{Pr}(R) & =\operatorname{Pr}(R, S)+\operatorname{Pr}(R, S c) \\
& =2 / 32+9 / 32 \\
& =11 / 32
\end{aligned}
$$

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Marginal Probability

$$
\begin{aligned}
& \operatorname{Pr}(B)=\Sigma \operatorname{Pr}\left(B, A_{i}\right) \\
& \operatorname{Pr}(B)=\Sigma \operatorname{Pr}\left(B \mid A_{i}\right) \cdot \operatorname{Pr}\left(A_{i}\right) \\
& \operatorname{Pr}(R)=?
\end{aligned}
$$

Events	S	Sc	Marginal
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
Marginal	$\operatorname{Pr}(\mathrm{S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Marginal Probability

$$
\begin{aligned}
\operatorname{Pr}(B) & =\Sigma \operatorname{Pr}\left(B \mid A_{i}\right) \cdot \operatorname{Pr}\left(A_{i}\right) \\
& \operatorname{Pr}(R)
\end{aligned}=\operatorname{Pr}(R \mid S) \cdot \operatorname{Pr}(S)+\operatorname{Pr}(R \mid S c) \cdot \operatorname{Pr}(S c)
$$

Conditional Probability

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B})
\end{aligned}
$$

Conditional Probability

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B}) \\
& \operatorname{Pr}(\mathrm{A}, \mathrm{~B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{B}, \mathrm{~A})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})
\end{aligned}
$$

Conditional Probability

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B}) \\
& \operatorname{Pr}(\mathrm{A}, \mathrm{~B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{B}, \mathrm{~A})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})
\end{aligned}
$$

Joint $=$ Conditional \mathbf{x} Marginal

Conditional Probability

$\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{A}) / \operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{B}) / \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(\mathrm{A}, \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{B}, \mathrm{A})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})$

Joint $=$ Conditional \mathbf{x} Marginal

Competition: Best mnemonic

Conditional Probability

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{~A}) / \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{~B}) / \operatorname{Pr}(\mathrm{B}) \\
& \operatorname{Pr}(\mathrm{A}, \mathrm{~B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{B}, \mathrm{~A})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})
\end{aligned}
$$

Conditional Probability

$\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B}, \mathrm{A}) / \operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}, \mathrm{B}) / \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(\mathrm{A}, \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{B}, \mathrm{A})=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \cdot \operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) / \operatorname{Pr}(\mathrm{B})$

BAYES RULE

Events	S	Sc	
R	2	9	$\operatorname{Pr}(\mathrm{R})=11 / 32$
Rc	18	3	$\operatorname{Pr}(\mathrm{Rc})=21 / 32$
	$\operatorname{Pr}(\mathrm{~S})=20 / 32$	$\operatorname{Pr}(\mathrm{Sc})=12 / 32$	32

Bayes Rule

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})= & \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) / \operatorname{Pr}(\mathrm{B}) \\
\operatorname{Pr}(\mathrm{R} \mid \mathrm{S}) & =\operatorname{Pr}(\mathrm{S} \mid \mathrm{R}) \cdot \operatorname{Pr}(\mathrm{R}) / \operatorname{Pr}(\mathrm{S}) \\
& =(2 / 11) \cdot(11 / 32) /(20 / 32) \\
& =2 / 20
\end{aligned}
$$

BAYES RULE: alternate form

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) / \operatorname{Pr}(\mathrm{B}) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) / \Sigma \operatorname{Pr}\left(\mathrm{B}, \mathrm{~A}_{\mathrm{i}}\right) \\
& \operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) / \underset{\text { Normalizing Constant }}{\left(\Sigma \operatorname{Pr}\left(\mathrm{B} \mid \mathrm{A}_{\mathrm{i}}\right) \cdot \operatorname{Pr}\left(\mathrm{A}_{\mathrm{i}}\right)\right)}
\end{aligned}
$$

Monty Hall Problem

\uparrow

Monty Hall Problem

$P_{1}=1 / 3$

$P_{2}=1 / 3$

Monty Hall Problem

$P_{1} \mid$ open 3
$=?$

$\mathrm{P}_{2} \mid$ open 3
$=?$
$\mathrm{P}_{3} \mid$ open 3
= ?

Monty Hall Problem

open $3 \mid P_{1}$

open $3 \mid P_{2}$

Monty Hall Problem

open $3 \mid P_{1}$
$=1 / 2$

open $3 \mid P_{2}$
$=1$

Monty Hall Problem

$P_{1} \mid$ open 3
$=1 / 3$
$\mathrm{P}_{2} \mid$ open 3
$=2 / 3$

Monty Hall Problem

STATSTICALYY SPEAKING, IF YOU PK UP SEASHELL AND DOST HOD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

BAYES RULE: alternate form

$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) / \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) /(\Sigma \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}))$

Factoring probabilities:

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{A}, \mathrm{~B}, \mathrm{C}) & =\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}) \operatorname{Pr}(\mathrm{B}, \mathrm{C}) \\
& =\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}) \operatorname{P}(\mathrm{B} \mid \mathrm{C}) \operatorname{Pr}(\mathrm{C})
\end{aligned}
$$

BAYES RULE: alternate form
$\operatorname{Pr}(A \mid B)=\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A) / \operatorname{Pr}(B)$
$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}) /(\Sigma \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{A}))$
Factoring probabilities:

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{A}, \mathrm{~B}, \mathrm{C}) & =\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}) \operatorname{Pr}(\mathrm{B}, \mathrm{C}) \\
& =\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}) \operatorname{P}(\mathrm{B} \mid \mathrm{C}) \operatorname{Pr}(\mathrm{C})
\end{aligned}
$$

Joint $=$ Conditional \mathbf{x} Marginal

Random Variables

"a variable that can take on more than one value, in which the values are determined by probabilities"

$$
\begin{gathered}
\operatorname{Pr}\left(\mathrm{Z}=\mathrm{z}_{\mathrm{k}}\right)=\mathrm{p}_{\mathrm{k}} \\
\text { given: } \\
0 \leq \mathrm{p}_{\mathrm{k}} \leq 1
\end{gathered}
$$

Random variables can be continuous or discrete

Discrete random variables

z_{k} can only take on discrete values (typically integers)
We can define two important and interrelated functions probability mass function (pmf):
$\mathrm{f}(\mathrm{z})=\operatorname{Pr}\left(\mathrm{Z}=\mathrm{z}_{\mathrm{k}}\right)=\mathrm{p}_{\mathrm{k}}$
where $\Sigma \mathrm{f}(\mathrm{z})=1 \quad$ (if not met, is just a density fcn)
Cumulative distribution function (cdf):
$F(z)=\operatorname{Pr}\left(Z \leq z_{k}\right)=\Sigma f(z)$ summed up to k
$0 \leq \mathrm{F}(\mathrm{z}) \leq 1$ but can be infinite in z

Example

For the set $\{1,2,3,4,5,6\}$

$$
\begin{aligned}
& f(z)=\operatorname{Pr}\left(Z=z_{k}\right)=\{1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6\} \\
& F(z)=\operatorname{Pr}\left(Z \leq z_{k}\right)=\{1 / 6,2 / 6,3 / 6,4 / 6,5 / 6,6 / 6\}
\end{aligned}
$$

$$
\text { For } z<1, f(z)=0, F(z)=0
$$

$$
\text { For } z>6, f(z)=0, F(z)=1
$$

Continuous Random Variables

z is Real (though can still be bound)
Cumulative distribution function (cdf):
$F(z)=\operatorname{Pr}(Z \leq z) \quad$ where $0 \leq F(z) \leq 1$

$$
\begin{aligned}
\operatorname{Pr}(Z=z) & \text { is infinitely small } \\
\operatorname{Pr}(z \leq \mathrm{Z} \leq \mathrm{z}+\mathrm{dz}) & =\operatorname{Pr}(\mathrm{Z} \leq \mathrm{z}+\mathrm{dz})-\operatorname{Pr}(\mathrm{Z} \leq \mathrm{z}) \\
& =\mathrm{F}(\mathrm{z}+\mathrm{dz})-\mathrm{F}(\mathrm{z})
\end{aligned}
$$

Probability density function (pdf):

$$
\begin{gathered}
\mathrm{f}(\mathrm{z})=\mathrm{dF} / \mathrm{dz} \\
\mathrm{f}(\mathrm{z}) \geq 0 \text { but NOT bound by } 1
\end{gathered}
$$

Continuous Random Variables

f is derivative of F
F is integral of f

$$
\operatorname{Pr}(z \leq Z \leq z+d z)=\int_{z}^{z+d z} f(z)
$$

ANY function that meets these rules (positive, integrate to 1)
Wednesday we will be going over a number of standard number of distributions and discussing their interpretation/application.

Example: exponential distribution

$$
\begin{gathered}
f(z)=\lambda \exp (-\lambda z) \\
F(z)=1-\exp (-\lambda z) \\
\text { Where } \mathrm{z} \geq 0
\end{gathered}
$$

What are the values of $F(z)$ and $f(z)$:

$$
\begin{gathered}
\text { At } z=0 ? \\
\text { As } z \rightarrow \infty ?
\end{gathered}
$$

What do $F(z)$ and $f(z)$ look like?

Exponential

$\operatorname{Exp}(x \mid \lambda)=\lambda \exp (-\lambda x)$

At $z=0$

$$
\begin{aligned}
f(z) & =\Theta \\
F(z) & =0
\end{aligned}
$$

As $z \rightarrow \infty$

$$
\begin{aligned}
& f(z)=0 \\
& F(z)=1
\end{aligned}
$$

Moments of probability distributions

$$
E\left[x^{n}\right]=\int x^{n} \cdot f(x) d x
$$

$E[]=$ Expected value

First moment $(n=1)=$ mean
Example: exponential

$$
\begin{aligned}
E[x] & =\int x \cdot f(x) d x=\int_{0}^{\infty} x \lambda \exp (-\lambda x) \\
& =-\left.x \exp (-\lambda x)\right|_{0} ^{\infty}+\frac{1}{\lambda} \int_{0}^{\infty} \lambda \exp (-\lambda x) \\
E[x] & =1 / \lambda
\end{aligned}
$$

Properties of means

$$
\begin{aligned}
& \mathrm{E}[\mathrm{c}]=\mathrm{c} \\
& \mathrm{E}[\mathrm{x}+\mathrm{c}]=\mathrm{E}[\mathrm{x}]+\mathrm{c}
\end{aligned}
$$

$$
\mathrm{E}[\mathrm{cx}]=\mathrm{c} \mathrm{E}[\mathrm{x}]
$$

$$
\mathrm{E}[\mathrm{x}+\mathrm{y}]=\mathrm{E}[\mathrm{x}]+\mathrm{E}[\mathrm{y}]
$$

$$
\text { (even if } X \text { is not independent of } Y \text {) }
$$

$$
E(x y)=E[x] E[Y]
$$

only if independent
$E[g(x)]!=g(E[x])$
Jensen's Inequality

Central Moments

$$
E\left[(x-E[x])^{n}\right]=\int(x-E[x])^{n} \cdot f(x) d x
$$

Second Central Moment $=$ Variance $=\sigma^{2}$

$$
\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)
$$

Properties of variance

$$
\operatorname{Var}(X+b)=\operatorname{Var}(X)
$$

Distributions and Probability

all the same properties apply to random variables

$$
\operatorname{Pr}(A, B) \quad \text { joint distribution }
$$

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A, B)}{\operatorname{Pr}(B)}
$$

conditional distribution
$\operatorname{Pr}(A)=\sum \operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right) \quad$ marginal distribution

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)} \quad \text { Baye's Rule }
$$

Looking forward...

Use probability distributions to:

- Quantify the match between models and data
- Represent uncertainty about model parameters
- Partition sources of process variability

