Applied Environmental Statistics

GE 509

Instructor: Prof. Michael Dietze

Introductions

N = Normal distribution NND = Non normal distribution

What is statistical modeling?

What is statistical modeling?

"Confronting models with data"

- Model fitting / parameter estimation
- Model comparison
- Estimation, partitioning, and propagation of uncertainties

What is statistical modeling?

"Confronting models with data"

Design the statistical analysis to fit the data rather than the data to fit the test

What is a model?

What is a model?

A conceptual, graphical, or mathematical representation / abstraction of some empirical process(es).

A mathematical function that formalizes our conceptual model / theory

$$f(x) = a \qquad f(x) = \frac{f(x)}{f(x)} = \frac{f(x)}{f(x)} = \underbrace{f(x)}_{\text{Ocean ecology and biogeochemistry}}^{\text{Atmospheric GCM}}$$

What is a model?

Models are HYPOTHESES

Syllabus

Course Materials

- Reading assignments, lecture slides, project details, etc. are all posted on the lab website http://people.bu.edu/dietze/Bayes2020/EE509.htm
- Primary Text: "Models for Ecological Data" Clark 2007 Princeton U Press
- Software:
 - R / RStudio
 - OpenBUGS / JAGS
 - Git / GitHub

Grading

Grading will be based on lab reports, a semesterlong project, and four exams.

Lab reports/problem sets (10 points each) = 150Semester project = 95 project proposal 2/14 (10)3/6 model description (15)preliminary analysis 4/10 (20)before exam 4 **Final report** (50)Exams (30, 25, 30, 30 points) = 115[non-cumulative] Total = 360

Labs

- LAB IS MANDATORY
- Labs will be posted in git repository https://github.com/mdietze/EE509
- Due FOLLOWING WEEK by the start of lab
- Must be turned in individually
- Can work together

Semester Project

- Final product:
 - "Journal article" on a data analysis
 - You choose topic
 - ENCOURAGED to use your own data
 - <u>Analysis must be new</u>, use concepts from class
 - "Methods" heavy
- Four milestones
- One lab is peer critique

Lecture & Exams

- Four sections
 - Probability theory and Maximum Likelihood
 - Bayesian methods
 - Hierarchical/mixed models
 - Linear regression \rightarrow nonlinear, non-gaussian
 - Advanced topics
 - Time series
 - Spatial

Exams

- Multiple Choice
- Matching
- Fill in the blank
- Short Answer / Derivation
- ~15 questions

Expectations

- You have seen basic calculus at some point
 - Primarily need to <u>follow</u> derivations
- Basic familiarity with statistical concepts
 - e.g. experimental design, randomization, mean, median, variance
- Open mind
- You will work hard
- You won't 'get' Bayes the first time they see it (but will need to by the 2nd exam)

Objectives

- Literacy
 - Read and evaluate advanced stats used in papers
- Proficiency
 - underlying statistical concepts
 - Software: R, JAGS
- Exposure to advanced topics
- Paradigm shift

A bit more on motivation....

Data are usually complex

Violate the assumptions of classical tests

This complexity can be addressed with modern techniques

Example: How much light is a tree getting?

Example: How much light is a tree getting?

Problem Characteristics

- Multiple data constraints
- Non-linear relationships
- Non-Normal residuals
- Non-constant variance
- Latent variables (response variable not being observed directly)
- Distinction between observation error and process variability
- Missing data

Statistical Paradigms

- Classical (e.g. sum of squares)
- Maximum Likelihood
- Bayesian

Statistical Paradigms

	Statistical Estimator	Method of Estimation	Output	Data Complexity	Prior Info
Classical	Cost Function	Analytical Solution	Point Estimate	Simple	No
Maximum Likelihood	Probability Theory	Numerical Optimization	Point Estimate	Intermediate	No
Bayesian	Probability Theory	Sampling	Probability Distribution	Complex	Yes

Statistical Paradigms

	Statistical Estimator	Method of Estimation	Output	Data Complexity	Prior Info
Classical	Cost Function	Analytical Solution	Point Estimate	Simple	No
Maximum Likelihood	Probability Theory	Numerical Optimization	Point Estimate	Intermediate	No
Bayesian	Probability Theory	Sampling	Probability Distribution	Complex	Yes

The unifying principal for this course is statistical estimation based on **probability**

Next lecture

- Will cover basics of probability theory
- Read
 - Clark 2007 Chapter 1
 - Hilborn and Mangel p39-62 (course website)
- Optional
 - Clark 2007 Appendix D (Probability)
 - Otto and Day Appendix 1 (Math) and 2 (Calculus) (course website)