Spatial Data

Types of Spatial Data

- Point pattern
- Point referenced
 - "geostatistical"
- Block referenced
 - Raster / lattice / grid
 - Vector / polygon

Point Pattern Data

- Interested in the location of points, not their attributes
- Degree of aggregation

Ripley's K

- Calculates counts of points as a function of distance bins for each point
- Combine points together and normalize by area
- Positive = more points expected than random at that distance
- Negative = less than expected
- Intervals by bootstrap
- Requires def'n of area

$$L(d) = \sqrt{\frac{A \sum_{i=1}^{n} \sum_{j=1, j \neq 1}^{n} k(i, j)}{\pi n (n-1)}}$$

Х

Ripley's K

OVERDISPERSED

Ripley's K in Rlibrary(spatial)## load library

ppregion(xmin,xmax,ymin,ymax) ## define region

rK <- Kfn(x,max.distance) ## calculate Ripley's K

plot(rK\$x,rK\$y-rK\$x,type='l',xlab="d",ylab="L(d)") ##Plot as L(d) rather than K(d)

compute and plot interval estimate
Ke <- Kenvl(max.distance, nrep, Psim(n))
lines(Ke\$x,Ke\$upper-Ke\$x,Ity=2,col="grey")
lines(Ke\$x,Ke\$lower-Ke\$x,Ity=2,col="grey")</pre>

Applications and Extensions

- Irregularly shaped areas
- Choice of points counted in each sum can vary with categorical attribute
- Tree maps
 - Juvenile aggregated (dispersal)
 - Intermediate random (DD mortality)
 - Adults are over-dispersed (crown competition)

Point Referenced Data

- Data has a value/attribute plus spatial coordinates but not area
- Aka geospatial data
 - Origin in mining
- Usually sampling some underlying continuum
- Aims:
 - Account for lack of independence in data due to spatial proximity (analogous to time series)
 - Predict the value at some new location (usually a grid / map)

Examples of Point Ref Data

- Soils
 - Moisture, nutrients, pH, texture, etc.
- Atmospheric or Ocean measurement
 - Surface meteorology (temperature, precip, etc.)
 - CO2, pollutant concentration, salinity, etc.
- Plot data were size of plot << size of domain
 - Biomass/abundance, presence/absence, richness
 - Invasive species, disease prevalence, etc.

Geospatial Exploratory Analyses

- Smoothing & Detrending
- Autocorrelation
- Interpolation
 - Linear
 - Inverse distance weighed
 - Geostatistical (Kriging)

 Many packages in R, will focus on most basic & "built in"

Smoothing / Detrending

- **Objective**: Like with time-series, most statistical methods assume **stationarity**
- More complicated in 2D (sparse, irregular)
- Polynomial (in R, library(spatial))
 - Fit surface: **surf.ls**(degree, x, y, z)
 - Project: trmat(surf.obj, xmin, xmax, ymin, ymax, n)
 - Plot: image(tr.obj)

Degree 0

Degree 1

Degree 2

Spatial autocorrelation

хр

Variogram

 Traditionally, autocorrelation in geostatistics has been expressed in terms of a variogram or semivariogram

хр

Spatial Covariance

• If C(d) is the spatial covariance

$$C(d) = COV[Z_x, Z_{x+d}]$$

- Autocorrelation : $\rho(d) = C(d)/C(0)$
- Variogram : $\gamma(d) = C(0) C(d)$

Interpolation

- Objective: predict Z at some new point(s)
 - Often on a grid to make a raster map
- Linear
 - Simplest if data already on a grid (four corners)

Interpolation

- Bicubic interpolation: cubic analog to bilinear
- Nearest-Neighbor:
 - Tesselation
 - Voronoi Diagram
- Triangular irregular network (TIN)

Inverse-Distance Weighted

- Previous methods only used nearest points
- All are special cases of a weighted average
- For irregular, often want to use <u>n-nearest points</u> or a <u>fixed search radius</u> (variable number of points)
- Requires a way of WEIGHTING points as a function of distance
- Inverse-distance weighted: $W_{\parallel} = 1/d_{\parallel}$
- $Z_i = \Sigma W_{ij} Z_j / \Sigma W_{ij}$

Spatial Weighted Averages

- Other alternatives to 1/d (e.g. 1/d²)
- Major criticisms
 - Choice of weighting function somewhat arbitrary, not connected to properties of the data
 - Does not account for error in interpolation
 - Points further from known points should be more uncertain
- Interpolation vs smoothing
 - Interpolation always passes exactly though the data points (0 residuals)
 - Smoothing separates trends + residuals

Kriging

- Interpolation based on autocorrelation fcn
- Requires fitting an autocorrelation model to the variogram or correlogram
 - Provides "weight" to points based on observed relationship between distance and correlation
 - Requires choice of parametric function
- Provides mechanism for estimating interpolation error

Variogram Models

хр

Krige

Krige

Step 1: Fit variance model

##correlogram
cg <- correlogram(data,nbin)</pre>

```
##fit covariance function<br/>expfit <- function(parm){<br/>-sum(dnorm(cg$y,<br/>expcov(cg$x,parm[1]),<br/>parm[2],log=TRUE))Built in function<br/>for exponential<br/>covariance}<br/>efit <- optim(ic,expfit)</td>\prod N(y|f(x|\alpha), \sigma^2)<br/>l
```

 $-\sum \log \left(N(y|f(x|\alpha),\sigma^2) \right)$

Step 2: Krige surface

##detrend accounting for covariance
kr <- surf.gls(degree,expcov,data,d=efit\$par[1],...)</pre>

matrix prediction (Kriging)
pr <- prmat(kr, xmin, xmax, ymin, ymax, n)
image(pr)</pre>

matrix error se <- semat(kr, xmin, xmax, ymin, ymax, n) contour(se3,add=TRUE)

Anisotropy

- In addition to STATIONARITY (spatial covariance is the same at all locations), spatial models also assume ISOTROPY, that the spatial covariance is the same in all DIRECTIONS
- Calculate/fit variogram separately for different directions (angular bins) to account for anisotropy
 - Increases # of parameters, less data points as bins get smaller
 - Alt: modify cov fcn to account for direction
 - Alt: fit cov fcn to different subdomains (location)

Flavors of Kriging

- Simple Kriging: mean = 0
- Ordinary Kriging: mean = unknown μ
- Universial Kriging: mean = polynomial trend
- Cokriging: inclusion of covariates

Limitations of Kriging

- Assumes the variogram model is known
 - Dropped parameter error
- Fitting of variogram model:
 - Not done as part of overall model fit
 - Not done on data directly
 - Binned means of all n² pairwise differences
- Detrending and autocorr done separately
- Sometimes just want non-independence
- Similar to T.S., OK for EDA but ultimately want to fit whole model at once.