
  

Spatial Data



  

Types of Spatial Data

● Point pattern
● Point referenced

– “geostatistical”

● Block referenced
– Raster / lattice / grid

– Vector / polygon



  

Point Pattern Data

● Interested in the location of points, not their 
attributes

● Degree of aggregation



  

Ripley's K

● Calculates counts of points as a function of 
distance bins for each point

● Combine points together and normalize by area
● Positive =  more points expected than random 

at that distance
● Negative = less than expected
● Intervals by bootstrap
● Requires def'n of area
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Ripley's K



  

Ripley's K in R
library(spatial) ## load library

ppregion(xmin,xmax,ymin,ymax) ## define region

rK <- Kfn(x,max.distance)  ## calculate Ripley's K

plot(rK$x,rK$y-rK$x,type='l',xlab="d",ylab="L(d)")
##Plot as L(d) rather than K(d)

## compute and plot interval estimate
Ke <- Kenvl(max.distance, nrep, Psim(n))
lines(Ke$x,Ke$upper-Ke$x,lty=2,col="grey")
lines(Ke$x,Ke$lower-Ke$x,lty=2,col="grey")



  

Applications and Extensions

● Irregularly shaped areas
● Choice of points counted in each sum can vary 

with categorical attribute
● Tree maps

– Juvenile aggregated (dispersal)

– Intermediate random (DD mortality)

– Adults are over-dispersed (crown competition)



  

Point Referenced Data

● Data has a value/attribute plus spatial 
coordinates but not area

● Aka geospatial data
– Origin in mining

● Usually sampling some underlying continuum
● Aims:

– Account for lack of independence in data due to 
spatial proximity (analogous to time series)

– Predict the value at some new location (usually a 
grid / map)



  

Examples of Point Ref Data

● Soils
– Moisture, nutrients, pH, texture, etc.

● Atmospheric or Ocean measurement
– Surface meteorology (temperature, precip, etc.)

– CO2, pollutant concentration, salinity, etc.

● Plot data were size of plot << size of domain
– Biomass/abundance, presence/absence, richness

– Invasive species, disease prevalence, etc. 



  



  

Geospatial Exploratory Analyses

● Smoothing & Detrending
● Autocorrelation
● Interpolation

– Linear

– Inverse distance weighed

– Geostatistical (Kriging)

● Many packages in R, will focus on most basic & 
“built in”



  

Smoothing / Detrending

● Objective: Like with time-series, most 
statistical methods assume stationarity

● More complicated in 2D (sparse, irregular)
● Polynomial (in R, library(spatial) )

– Fit surface: surf.ls(degree, x, y, z)
– Project:  trmat(surf.obj, xmin, xmax, 

ymin, ymax, n)
– Plot: image(tr.obj)



  

Degree 0 Degree 1 Degree 2



  

Spatial autocorrelation

 correlogram(surf.ls,nbin)



  

NULL model interval 
estimate by non-
parametric bootstrap



  

Variogram

● Traditionally, autocorrelation in geostatistics has 
been expressed in terms of a variogram or 
semivariogram

● Units = variance  d = 1
N d  ∑

i , j  d

N d 

Z i−Z j
2

● Sill = asymptote
● Range = distance 

to asymptote
● Nugget = variance 

at lag 0



  

variogram(surf.ls,nbin)



  

Spatial Covariance

● If C(d) is the spatial covariance

● Autocorrelation : 

● Variogram :

C d =COV [Z x , Z xd ]

d =C d /C 0

 d =C 0−C d 



  

Interpolation

● Objective: predict Z at some new point(s)
– Often on a grid to make a raster map

● Linear
– Simplest if data already on a grid (four corners)



  

Interpolation

● Bicubic interpolation:  cubic analog to bilinear
● Nearest-Neighbor:

– Tesselation

– Voronoi Diagram

● Triangular irregular
network (TIN)



  

Inverse-Distance Weighted

● Previous methods only used nearest points
● All are special cases of a weighted average
● For irregular, often want to use n-nearest points 

or a fixed search radius (variable number of 
points)

● Requires a way of WEIGHTING points as a 
function of distance 

● Inverse-distance weighted:  W
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 = 1/d

ij

● Z
i 
= S W

ij 
Z

j 
/ S W

ij



  

Spatial Weighted Averages

● Other alternatives to 1/d (e.g. 1/d2)
● Major criticisms

– Choice of weighting function somewhat arbitrary, 
not connected to properties of the data

– Does not account for error in interpolation
● Points further from known points should be more 

uncertain

● Interpolation vs smoothing
– Interpolation always passes exactly though the data 

points (0 residuals)

– Smoothing separates trends + residuals



  

Kriging

● Interpolation based on autocorrelation fcn
● Requires fitting an autocorrelation model to the 

variogram or correlogram
– Provides “weight” to points based on observed 

relationship between distance and correlation

– Requires choice of parametric function

● Provides mechanism for estimating 
interpolation error



  

Variogram Models
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##correlogram
cg <- correlogram(data,nbin)

##fit covariance function
expfit <- function(parm){

-sum(dnorm(cg$y,
expcov(cg$x,parm[1]),
parm[2],log=TRUE)) 

}
efit <- optim(ic,expfit)

Built in function 
for exponential 
covariance

∏ N  y∣f x∣ ,2

−∑ log N  y∣f x∣ ,2 

Step 1: Fit variance model



  

##detrend accounting for covariance
kr <- surf.gls(degree,expcov,data,d=efit$par[1],...)

## matrix prediction (Kriging)
pr <- prmat(kr, xmin, xmax, ymin, ymax, n)
image(pr)

## matrix error
se <- semat(kr, xmin, xmax, ymin, ymax, n)
contour(se3,add=TRUE)

Step 2: Krige surface



  

Anisotropy
● In addition to STATIONARITY (spatial 

covariance is the same at all locations), spatial 
models also assume ISOTROPY, that the 
spatial covariance is the same in all 
DIRECTIONS

● Calculate/fit variogram separately for different 
directions (angular bins) to account for 
anisotropy
– Increases # of parameters, less data points as bins 

get smaller

– Alt: modify cov fcn to account for direction

– Alt: fit cov fcn to different subdomains (location)



  

Flavors of Kriging

● Simple Kriging: mean = 0

● Ordinary Kriging: mean = unknown m
● Universial Kriging: mean = polynomial trend
● Cokriging: inclusion of covariates



  

Limitations of Kriging

● Assumes the variogram model is known
– Dropped parameter error

● Fitting of variogram model:
– Not done as part of overall model fit

– Not done on data directly
● Binned means of all n2 pairwise differences

● Detrending and autocorr done separately
● Sometimes just want non-independence
● Similar to T.S., OK for EDA but ultimately want 

to fit whole model at once. 


