Spatial Data
Types of Spatial Data

- Point pattern
- Point referenced
 - “geostatistical”
- Block referenced
 - Raster / lattice / grid
 - Vector / polygon
Point Pattern Data

- Interested in the location of points, not their attributes
- Degree of aggregation
Ripley's K

- Calculates counts of points as a function of distance bins for each point
- Combine points together and normalize by area
- Positive = more points expected than random at that distance
- Negative = less than expected
- Intervals by bootstrap
- Requires def'n of area

\[L(d) = \sqrt{\frac{A \sum_{i=1}^{n} \sum_{j=1, j \neq 1}^{n} k(i, j)}{\pi n (n - 1)}} \]
Ripley's K in R

```r
library(spatial)  ## load library

ppregion(xmin,xmax,ymin,ymax)  ## define region

rK <- Kfn(x,max.distance)  ## calculate Ripley's K

plot(rK$x, rK$y-rK$x, type='l', xlab='d', ylab='L(d)')
  ##Plot as L(d) rather than K(d)

## compute and plot interval estimate
Ke <- Kenvl(max.distance, nrep, Psim(n))
lines(Ke$x, Ke$upper-Ke$x, lty=2, col="grey")
lines(Ke$x, Ke$lower-Ke$x, lty=2, col="grey")
```
Applications and Extensions

- Irregularly shaped areas
- Choice of points counted in each sum can vary with categorical attribute
- Tree maps
 - Juvenile aggregated (dispersal)
 - Intermediate random (DD mortality)
 - Adults are over-dispersed (crown competition)
Point Referenced Data

- Data has a value/attribute plus spatial coordinates but not area
- Aka geospatial data
 - Origin in mining
- Usually sampling some underlying continuum
- Aims:
 - Account for lack of independence in data due to spatial proximity (analogous to time series)
 - Predict the value at some new location (usually a grid / map)
Examples of Point Ref Data

● Soils
 - Moisture, nutrients, pH, texture, etc.

● Atmospheric or Ocean measurement
 - Surface meteorology (temperature, precip, etc.)
 - CO2, pollutant concentration, salinity, etc.

● Plot data were size of plot $<<$ size of domain
 - Biomass/abundance, presence/absence, richness
 - Invasive species, disease prevalence, etc.
Geospatial Exploratory Analyses

- Smoothing & Detrending
- Autocorrelation
- Interpolation
 - Linear
 - Inverse distance weighed
 - Geostatistical (Kriging)

- Many packages in R, will focus on most basic & “built in”
Smoothing / Detrending

- **Objective**: Like with time-series, most statistical methods assume **stationarity**
- More complicated in 2D (sparse, irregular)
- Polynomial (in R, library(spatial))
 - Fit surface: `surf.ls`(degree, x, y, z)
 - Project: `trmat`(surf.obj, xmin, xmax, ymin, ymax, n)
 - Plot: `image`(tr.obj)
Spatial autocorrelation

correlogram(surf.ls,nbin)
NULL model interval estimate by non-parametric bootstrap
Variogram

- Traditionally, autocorrelation in geostatistics has been expressed in terms of a variogram or semivariogram
- Units = variance
 \[\gamma(d) = \frac{1}{N(d)} \sum_{i,j \in d} (Z_i - Z_j)^2 \]

- Sill = asymptote
- Range = distance to asymptote
- Nugget = variance at lag 0
variogram(surf.ls,nbin)
Spatial Covariance

- If $C(d)$ is the spatial covariance

$$C(d) = COV[Z_x, Z_{x+d}]$$

- Autocorrelation:

$$\rho(d) = \frac{C(d)}{C(0)}$$

- Variogram:

$$\gamma(d) = C(0) - C(d)$$
Interpolation

- **Objective:** predict Z at some new point(s)
 - Often on a grid to make a raster map
- **Linear**
 - Simplest if data already on a grid (four corners)
Interpolation

- **Bicubic interpolation**: cubic analog to bilinear
- **Nearest-Neighbor**:
 - Tessellation
 - Voronoi Diagram
- **Triangular irregular network (TIN)**
Inverse-Distance Weighted

- Previous methods only used nearest points
- All are special cases of a weighted average
- For irregular, often want to use \textit{n-nearest points} or a \textit{fixed search radius} (variable number of points)
- Requires a way of WEIGHTING points as a function of distance
 - Inverse-distance weighted: \(W_{ij} = 1/d_{ij} \)
 - \(Z_i = \sum W_{ij} Z_j / \sum W_{ij} \)
Spatial Weighted Averages

• Other alternatives to $1/d$ (e.g. $1/d^2$)

• Major criticisms
 – Choice of weighting function somewhat arbitrary, not connected to properties of the data
 – Does not account for error in interpolation
 • Points further from known points should be more uncertain

• Interpolation vs smoothing
 – Interpolation always passes exactly through the data points (0 residuals)
 – Smoothing separates trends + residuals
Kriging

- Interpolation based on autocorrelation fcn
- Requires fitting an autocorrelation model to the variogram or correlogram
 - Provides “weight” to points based on observed relationship between distance and correlation
 - Requires choice of parametric function
- Provides mechanism for estimating interpolation error
Variogram Models

SPHERICAL

\[\gamma(h) = c_0 + c \left(\frac{3h}{\alpha^2} - \frac{1}{2} \left(\frac{h}{\alpha} \right)^3 \right) \quad 0 < h \leq \alpha \]
\[\gamma(h) = c_0 + c \quad h > \alpha \]
\[\gamma(0) = 0 \]

GAUSSIAN

\[\gamma(h) = c_0 + c \left(1 - \exp \left(-\frac{h}{\alpha} \right) \right) \quad h > 0 \]
\[\gamma(0) = 0 \]

EXPONENTIAL

\[\gamma(h) = c_0 + c \left(1 - \exp \left(-\frac{h}{\alpha} \right) \right) \quad h > 0 \]
\[\gamma(0) = 0 \]

LINEAR

\[\gamma(h) = c_0 + c \left(\frac{h}{\alpha} \right) \quad 0 < h \leq \alpha \]
\[\gamma(h) = c_0 + c \quad h > \alpha \]
\[\gamma(0) = 0 \]
Step 1: Fit variance model

```r
## correlogram
cg <- correlogram(data,nbin)

## fit covariance function
expfit <- function(parm){
  -sum(dnorm(cg$y,
              expcov(cg$x,parm[1]),
              parm[2],log= TRUE))
}
efit <- optim(ic,expfit)
```

\[
\prod N(y | f(x | \alpha), \sigma^2) \\
- \sum \log(N(y | f(x | \alpha), \sigma^2))
\]
Step 2: Krige surface

```r
## detrend accounting for covariance
kr <- surf.gls(degree, expcov, data, d = efit$par[1], ...)

## matrix prediction (Kriging)
pr <- prmat(kr, xmin, xmax, ymin, ymax, n)
image(pr)

## matrix error
se <- semat(kr, xmin, xmax, ymin, ymax, n)
contour(se, add = TRUE)
```
Anisotropy

- In addition to STATIONARITY (spatial covariance is the same at all locations), spatial models also assume ISOTROPY, that the spatial covariance is the same in all DIRECTIONS

- Calculate/fit variogram separately for different directions (angular bins) to account for anisotropy
 - Increases # of parameters, less data points as bins get smaller
 - Alt: modify cov fcn to account for direction
 - Alt: fit cov fcn to different subdomains (location)
Flavors of Kriging

- Simple Kriging: mean = 0
- Ordinary Kriging: mean = unknown μ
- Universal Kriging: mean = polynomial trend
- Cokriging: inclusion of covariates
Limitations of Kriging

- Assumes the variogram model is known
 - Dropped parameter error

- Fitting of variogram model:
 - Not done as part of overall model fit
 - Not done on data directly
 - Binned means of all n^2 pairwise differences

- Detrending and autocorr done separately

- Sometimes just want non-independence

- Similar to T.S., OK for EDA but ultimately want to fit whole model at once.