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Longitudinal Data
(aka Repeated Measures)

● The same observational unit (plot, individual,
etc) is often measured repeatedly over time

● Usually have many such observation units
● Observations on the same unit over time are

not independent



  



  



  

Alternatives for Repeated Measures
● Random effects

– By time: Assumes all observational
units move up or down in sync

● probably won't solve lack of independence

– By unit: Assumes a unit is offset from
“average” by some constant amount

● Autoregressive: AR(1)
– Assumes each unit is similar from one

time step to the next but not that units
are synchronized

● With short t.s. almost impossible to
distinguish AR vs individual effects



  

Example: Growth

● Consider a population of individuals censused 3
times who's growth is a function of X

● If we assume a common variance and autocor.
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Likelihood Approach
library(mvtnorm)
H <- matrix(c(0,1,2,1,0,1,2,1,0),3,3)

lnlik <- function(theta){
  beta  <- theta[1:2]
  sigma <- theta[3]
  rho   <- theta[4]
  SIGMA <- sigma/(1-rho^2)*rho^H

  L = 0
  for(i in 1:n){
    L = L - dmvnorm(g[i,],beta[1]+beta[2]*X[i,],SIGMA,log=TRUE)
  }
  
  return(L)

}
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Residual Error
AR(1) = 1.5
LM      = 2.1



  

Bayesian Approach

model{
  beta ~ dmnorm(b0,Vb)
  sigma ~ dgamma(0.01,0.01)
  rho   ~ dunif(-1,1)
  SIGMA <- inverse(1/sigma/(1-rho^2)*rho^H)

  for(i in 1:n){
    mu[i,] <- beta[1]+beta[2]*X[i,]
    g[i,] ~ dmnorm(mu[i,],SIGMA)
  }
}



  

State Space approach

● Bayesian version of AR(1) repeated measures
did not separate process and measurement
uncertainty

● Easy to extend the State Space model to the
repeated measures context with a common rho
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Generalization of Repeated
Measures

● Can accommodate mixed models / random
effects (though some would be redundant)

● Can accommodate nonlinear models
● Covariance matrix ONLY works with NORMAL

PDF
● State Space version can work with most any

PDF because we separate the data model (not
autocorrelated) from the process error
(autocorrelated)



  

Missing Data Covariance Matrix

● Drops missing ROWS and COLUMNS from
matrix

[ 1  3 4 5

 1 2 3 4

3 2 1  2

4 3  1 
5 4 2  1

]
Missing 3rd 
observation so drop
both the third row
and third column
from the full matrix

[ X1 X2 X4 X5 X6]



  

Hierarchical AR models

● Thus far have focused on autocorrelation in the
STATE variables as part of the process model

● In hierarchical models, can also model
autocorrelation in the hierarchical parameters
– Time-varying model parameters

~N 0,2

α⃗∼N (0,Τ)



  

Fire in the Florida
Everglades

Beckage and Platt 2003

ARMA(2,2) with
temporally varying
parameters



  

Intervention Analysis

● Treatment effects in TIME
– Pretreatment data establishes unit differences

● Hypotheses are usually that one or more
parameters changed with treatment

● Alternate model (NULL) is no change in
parameters with treatment

● Time can be modeled as
– Covariate (explicit)

– Time varying treatment (implicit)

– Autocorrelation



  



  

Change point / threshold detection
models

● Like Intervention models but the point in time
where the change in parameters occurs is itself
an unknown that needs to be estimated

● Challenging for likelihood models because the
likelihood has a discontinuity



  

beta1 ~ dmnorm(b0,Vb)  ## prior betas

beta2 ~ dmnorm(b0, Vb)

prec ~ dgamma(s1,s2)  ## prior precision

K ~ dcat(pi)      ##discrete prior for breakpoint

for (i in 1:n){

  mu1[i] <- beta1[1] + beta1[2]*time[i] ##prebreak 

  mu2[i] <- beta2[1] + beta2[2]*time[i] ##postbreak

  mu[i] <- ifelse(i>K,mu2[i],mu1[i])   ##process model

  y[i]  ~ dnorm(mu[i],prec) ## data model

}
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