
  

Classic Time
Series Analysis



  

Concepts and Definitions
● Let Y be a random number with PDF f

● Define 

– m(t) is known as the trend

● Define the autocovariance

Y t ~f  , t 

 t =E [Y t ]

 t , s=COV [Y t  ,Y s]
=E [Y t − t ⋅Y s− s]



  

Stationarity

● Strict stationarity: joint PDF of Y does not
change depending upon time

● Second-order stationarity

f  , t is=f  , t js

 t =

 t , s= ∣t−s∣

No trend

Covariance only a
function of difference in
time

Most common assumption



  

Descriptive Approaches

● Smoothing
● Detrending
● Differencing
● Autocorrelation
● Spectral decomposition (not covered)

– Power spectra / Fourier transform

– Wavelet



  

Smoothing

● Moving average
– Calculated mean within a window



  

Smoothing

● Weighted moving average
– Assign weights to different points within window

– Weights should be symmetric and sum to 1



  

Smoothing

● Filtering
– Assign weights to different points within window

– Weights NEED NOT be symmetric and sum to 1

– Generalization of Weighted Moving Average

– R function: filter(x,k)
● X = data
● K = vector of weights (a.k.a. kernel)

– e.g. k = c( 0.1, 0.2, 0.4, 0.2, 0.1 )



  

Smoothing

● Polynomial Regression
– R: lm(X ~ t + t^2 + t^3...)

Y t =∑
0

k

i t
it

10th order



  

Smoothing

● LOESS / LOWESS  (R: lowess(x) )
– Local regression within a moving window

● W = weighted

Window size

66%

25%



  

Detrending

● To meet the assumption of stationarity the
trends in data need to be removed

● For exploratory purposes:
– Estimate trend (smoothing)

– Calculate residuals

– Analyze residuals as a time-series

● For Analysis:

Y t =  t t 
Trend Autocorrelated

Error



  

● Goal: stationarity
– Normal with mean=0

– Homoskedastic

– Still autocorrelated is OK

LOWESS residuals



  

Differencing

● Can help detrend, increase stationarity
● Can increase understanding of process

– Often model change in X rather than X(t)

● Sometimes not autocorrelated (Markov)
● Discrete approx to derivative

● First difference DX= X
t
 - X

t-1

● Lagged difference  DX= X
t
 - X

t-n

● Second difference DX
t
 - DX

t-1



  

● R:  diff(x)



  

Density Dependence

● dN/dt changes with N
● Plot first difference vs N



  

Autocovariance

● Covariance between time-series and itself
● If 2nd order stationary, just a function of the lag

● Often written as
● Special case:

● Two time series can be related by their cross
correlation:

 t , s= ∣t−s∣

 s=Cov [Y t ,Y s]

0=Cov [Y t ,Y t ]=Var [Y t ]

 XY , s=Cov [X t ,Y t−s ]



  

AutocorrelationAutocorrelation

s=
s
0

R:  acf(x)

Correlogram



  

Partial and Cross-correlation

● Partial autocorrelation
( R: pacf(x) )
– Autocorrelation at

lag s after accounting
for correlation in 
lags up to s-1

● Cross-correlation
( R: ccf(x,y) )
– Correlation between

X(t) and Y(t-s)



  

Descriptive Approaches

● Smoothing
● Detrending
● Differencing
● Autocorrelation
● Spectral decomposition

– Power spectra / Fourier transform

– Wavelet



  

Classic Time Series Models

● Account for lack of independence in
observations
– Model the temporal error structure

● Make forecasts that account for autocorrelation

● Note: remaining slides assume trend = 0

Y t =  t t 
Trend Autocorrelated

error



  

ARIMA model
Autoregressive Integrated Moving Average

● General case for classic frequentist time series
● Contains a number of important special cases

– AR : Autoregressive models (p)

– I : Integrated models (d)

– MA : Moving average models (q)

– ARMA: Autoregressive moving average

– Gaussian white noise

● Models are named based on the order of the
three terms

ARIMA(p,d,q)



  

Gaussian white noise

Y t=t
● Mean 0
● Constant

variance
● No

autocorrelation

ARIMA(0,0,0)



  

Autoregressive Models: AR(p)

● Conceptually like fitting a linear regression
against the last p values

● AR(1) = first-order Markov process = ARIMA(1,0,0)

● If r = 1, AR(1) is a random walk

● If r = 0, AR(1) = AR(0) = white noise

Y t=∑
i=1

p

iY t−it

E [Y t ]=Y 0
t

Var [Y t ]=2∑
i=0

t

2i



  

Covariance matrices

● If |r| < 1 then as t -> ∞

● The covariance at lag s then becomes 

E [Y t ]=Y 0
t0

Var [Y t ]=2∑
i=0

t

2i  2

1−2

 s=2 s

1−2



  

Covariance matrices

● If we have a time series
 ... Y

t-2
 Y

t-1
 Y

t
 Y

t+1
 Y

t+2
 ...

● The covariance with Y
t
 is

● Can do the same calculation for every Y
t

 2 1 0 1 2 
2

1−2
[ 2  1  2]



  

Covariance matrix

=2R

R= 1

1−2 [ 1  2 ⋯ t−1

 1 
2  1
⋮ ⋱ p

t−1 p 1
]



  

AR(1) in models
Y t=Y t−1t
t~N 0,2

Y t=t
t~N 0, 

=0
Y t~N  ,

Process Model [trend]

Data Model [ AR(1) ]

=X 
Y t~N  ,

=f X ,
Y t~N  ,



  

Moving Average Models: MA(q)

● Lags on the errors instead of the Y's
● Equivalent to regression on the residuals
● Is related to the weighted moving average

approach to smoothing
– Coefficients fit rather than assumed

● MA(q)  =  ARIMA(0,0,q)

Y t=∑
j=1

q

a jt− jt



  

ARMA(p,q)

● Combines both Autoregressive and Moving
Average components

● ARMA(p,q)  =  ARIMA(p,0,q)

Y t=∑
i=1

p

iY t−i  t ∑
j=1

q

a jt− j



  

Integrated Model: I(d)

● Models the dth difference of Y rather than
modeling Y

● Simplest case assumes dth difference is
stationary (mean 0, constant variance)

● As mentioned before
– Differences approximate derivatives

– Biologically may expect these to follow some
process model (e.g. Density dependence)

● I(d) = ARIMA(0,d,0)

 dY t=t



  

ARIMA(p,d,q)
Autoregressive Integrated Moving Average

● General case for classic frequentist time series,
work just as well in Bayesian context

● Extensible to dealing with autocor in data
models

● Contains a number of important special cases
– AR(p) = ARIMA(p,0,0)

– MA(q) = ARIMA(0,0,q)

– I(d) = ARIMA(0,d,0)

– ARMA(p,q) = ARIMA(p,0,q)

– Gaussian white noise = ARIMA(0,0,0)



  

How do you set p,d,q

● Exploratory analyses
– Partial Autocorrelation function        (pacf)

– Differencing (diff)

– Weighted moving average smoothing  (filter)

● Model Selection
– AIC, LRT, DIC, etc.

– R function arima(X,c(p,d,q)) returns AIC

– R function ar(X) automatically finds the p with the
lowest AIC
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