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Why Time is Important
● Explicit in many environmental models

– Can generate complex/chaotic feedbacks

– External/environmental factors change over time

● Measurements often made repeatedly over time
– Data usually correlated in time

– Response to treatments

● Importance of separating process and
measurement error
– Measurement error does not propagate



  

Characteristics of Time Series Data

● Single/small number of long time series
– Often concerned with identifying trends, periodicity,

autocorrelation, cross-correlation, etc.

● Longitudinal / repeated measures
– Many short time series

– Intervention analysis

– Mark-recapture (boolean data)



  

Dynamic process models

● Recursive: state at current time point a function
of the previous state

● Any model that depends only on the most
recent state (x

t-1
) is called a Markov model

● Higher order models (additional lags) introduce
memory to the system

xt=f xt−1 , xt−2 ,,



  

Random Walk

X t=X t−1t

● Mean = X
0

● Var = t s2



  

Random Walk

Approaches

➔ Random effects?

➔ Autocorrelation?

➔ State space?

● Mean = 0

● Var = t s2

X t=X t−1t



  

Bayesian State Space Model

● X = latent time series
● Y = observed data

● e = process error

● w = observation error

X t=f X t−1t
Y t=g (X t)+ωt

Process Model

Data Model



  

Random Walk State Space Model

Data Model

Process Model

Parameter Model

X
t-1

X
t

X
t+1

Y
t+1

Y
t

Y
t-1

s2

Y's are conditionally independent given the X's

t2



  

Random Walk State Space Model
X t~N X t−1 ,

2
Y t~N X t ,

2
2~IG s1 , s2
2~IG t1 , t2

Process Model

Data Model

Process Error prior

Observation Error prior

● What are the parameters?
● What is the joint (full) posterior?
● What are the conditional distributions for each

parameter?

X 0~N X ic ,V X  Initial Condition prior



  

Random Walk State Space Model

X t~N X t−1 ,
2

Y t~N X t ,
2

2~IG s1 , s2
2~IG t1 , t2

Process Model

Data Model

Process Error prior

Observation Error prior

● What are the parameters?

–X's, s2, t2

Initial Condition priorX 0~N X ic ,V X 



  

Random Walk State Space Model

X t~N X t−1 ,
2

Y t~N X t ,
2

2~IG s1 , s2
2~IG t1 , t2

● What is the joint (full)
posterior?

X 0~N X ic ,V X 



  

Random Walk State Space Model

X t~N X t−1 ,
2

Y t~N X t ,
2

2~IG s1 , s2
2~IG t1 , t2

● What is the joint (full)
posterior?

X 0~N X ic ,V X 

p  X ,2,2∣Y ,~

∏
t=1

n

N Y t∣X t ,
2×

∏
t=1

n

N X t∣X t−1 ,
2×

IG 2∣t1 , t2×IG 2∣s1 , s2×N X 0∣X ic ,V X 



  

Random Walk State Space Model

X t~N X t−1 ,
2

Y t~N X t ,
2

2~IG s1 , s2
2~IG t1 , t2

● What are the conditional
distributions?

X 0~N X ic ,V X 



  

Random Walk State Space Model

X t~N X t−1 ,
2

Y t~N X t ,
2

2~IG s1 , s2
2~IG t1 , t2

● What are the conditional
distributions?

X 0~N X ic ,V X 

2~IG s1 , s2×

∏
t=1

n

N X t∣X t−1 ,
2

2~IG 2∣t1 , t2×

∏
t=1

n

N Y t∣X t ,
2



  

Random Walk State Space Model

X t~N X t−1 ,
2

Y t~N X t ,
2

2~IG s1 , s2
2~IG t1 , t2

● What are the conditional
distributions?

● Three special cases
– First

– Last

– Missing Y

X 0~N X ic ,V X 

X t~N X t∣X t−1 ,
2×

N X t1∣X t ,
2×

N Y t∣X t ,
2



  

Random Walk State Space Model

X t~N X t−1 ,
2

Y t~N X t ,
2

2~IG s1 , s2
2~IG t1 , t2

● First

● Last

● Missing Y X 0~N X ic ,V X 

X 0∼N (X 0∣X ic ,V X )×
N (X 1∣X 0,σ

2)

X n∼N (X n∣X n−1 ,σ
2)×

N (Y n∣X n , τ
2)

X t~N X t∣X t−1 ,
2×

N X t1∣X t ,
2



  

How do we sample?

● All amenable to Gibbs sampling (NxN, NxIG)
● X's need to be updated sequentially because

each X is conditioned on the one BEFORE it
and the one AFTER it

X t
g1~N X t∣X t−1

g1 ,2×
N X t1

g ∣X t ,
2×

N Y t∣X t ,
2



  

Bayesian State Space Model

● Y = observed data
● X = latent time series

● e = process error

● w = observation error

X t=f X t−1t
Y t=g X t t

Process Model

Data Model



  

Population growth

● r = intrinsic growth rate
● Y = log(observation)

● Can interpret e as a random effect on r

N t=N 0e
rt

X t=X t−1rt

Let X = log(N)

Discrete time recursion

Exponential Growth
d N
d t

=rN

Y t=X tt Observation error model



  

Exponential Growth State Space

Data Model

Process Model

Parameter Model

X
t-1

X
t

X
t+1

Y
t+1

Y
t

Y
t-1

r,s2

Y's are conditionally independent given the X's

t2



  

Example
● r = 0.1
● Process s.d. varied

from 0.01 to 1.0
● Run 1 = dominated

by process model
● Run 2 = process

model and process
error similar

● Run 3 = dominated
by process error
– Env or wrong model



  

tau2 = 0.05



  



  



  

Missing Data

Missing
Observations



  

Prediction



  

Generality of the State Space Model

● Neither X nor Y need be Normal
● X and Y don't need to be the same type of data
● X and Y don't need to have the same time scale
● Easily handles missing data (gaps) and

irregularly spaced data
● Easily handles multiple data sources (Y's),

which don't need to be the same type or
synchronous

● Easily handles time-integrated observations
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