Model Selection

- Philosophy of science and multiple alternative models
- Trade-offs
- Likelihood-based metrics
 - Likelihood Ratio Test
 - AIC
- Bayesian metrics
 - DIC
 - Predictive Loss
“The” Scientific Method?

- Popper
 - Falsification of hypotheses
 - Hypotheses can not be proved, only disproved

- Stats: “Hypothesis testing”
 - Single hypothesis is disproved by confrontation with the data
 - Likelihood the data would have been observed if the null hypothesis was true
 - If this probability (p-value) is small enough we reject the null
Alternative Philosophies of Science

- **Kuhn – Scientific Paradigms**
 - Dominant paradigm used until there is so much contradictory information that it is “overthrown”
 - Requires an alternate paradigm that is “better”

- **Polanyi – Republic of science**
 - Multiple views of the world by different scientists
 - Confrontation between views and data judged by plausibility, value, and interest

- **Lakatos – Scientific research program**
 - Confrontation of multiple hypothesis with data as arbitrator
Null models

• All these alternatives acknowledge
 – There may be multiple alternative models
 – Simple null models often scientifically trivial, uninteresting
 – Doesn't make sense to reject a model if there is not an alternative

• Likelihood and Bayesian stats both well suited to “judge” the contest between multiple competing hypotheses and data
Models vs Hypotheses

- Models usually more specific than hypothesis
- Hypoth: Birds forage more efficiently in flocks
- Models: Consumption vs Size
 - Consumption proportional
 - Consumption saturates
 - Increases then decreases

\[
\begin{align*}
C &= aS \\
C &= \frac{aS}{1 + bS} \\
C &= aS e^{-bs}
\end{align*}
\]

- “All models are wrong but some are useful”
 -- George Box
Model selection

• Focus on choosing between multiple competing models rather than refuting a single null model

• How do we judge models?
 – Complexity
 • Number of parameters
 – Uncertainty
 • Model residuals
 • Parameter error (identifiability)
 – Data as ultimate arbiter

• “Make everything as simple as possible, but not simpler.” - A. Einstein
Likelihood Ratio Test

- \(LR = \frac{L(x|\theta_A)}{L(x|\theta_B)} \)
- \(D = -2\ln L(x|\theta_A) - -2\ln L(x|\theta_B) \)
- The test statistic \(D \) is known to be distributed with a \(\chi^2 \) distribution
- Degrees of freedom = Difference in # of param.
 - Overall, \(L \) increases (-\(\ln L \) declines) with # of param.
 - Penalizes model with more parameters
- \(p\text{-val} = 1 - \text{pchisq}(D, df) \)
D = 3.84
LRT pro/con

- Only applies to *nested* models
- Asymptotically, slightly biased toward more complex models
- Provides a p-value

Additional reminders:

- **ALL** model selection criteria require application to the same data with same sample size
- e.g. If adding covariate Z requires rows to be dropped because of missing values, have to drop from the model w/o Z as well
Nested Models

- The more complex model collapses to the simpler model when one or more of the parameters is FIXED.

- Examples:
 - Weibull vs Exponential (Lab 3) (fix c=1)
 - Pine cone: combined vs AMB/ELEV (Lab 4)
 - Regression: Inclusion of additional covariates (fix slope = 0)
Example: Polynomial
Example: Polynomial

- **Candidate models:**
 - $Y = b_0$
 - $Y = b_0 + b_1 \cdot x$
 - $Y = b_0 + b_1 \cdot x + b_2 \cdot x^2$
 - $Y = b_0 + b_1 \cdot x + b_2 \cdot x^2 + b_3 \cdot x^3$

- **Comparisons**
 - 0 vs 1
 - 1 vs 2
 - 2 vs 3
- 0 vs 1
 \(p = 7.6 \times 10^{-10} \)
- 1 vs 2
 \(p = 0.00019 \)
- 2 vs 3
 \(p = 0.9238 \)
Akaike Information Criterion

\[AIC = -2 \ln L + 2p \]

- \(p \) = number of parameters in the model
- Based on information theory
- Lowest value “wins”
- Often expressed relative to best model, \(\Delta AIC \)
- No p-value
- “Rules of thumb”
 - 0-2 = similar
 - 2-5 = weak support
 - >5 = strong
- ΔAIC
- 0
- 47.77
- 1
- 11.91
- 2
- 0.00
- 3
- 1.99
P-value

- Probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.
- **Not** the probability that the null hypothesis is true
 - P-value can be close to zero when the posterior probability of the null is close to 1
- **Not** the probability of falsely rejecting the null hypothesis
PROBABLE CAUSE

A P value measures whether an observed result can be attributed to chance. But it cannot answer a researcher's real question: what are the odds that a hypothesis is correct? Those odds depend on how strong the result was and, most importantly, on how plausible the hypothesis is in the first place.

Before the experiment
The plausibility of the hypothesis — the odds of it being true — can be estimated from previous experiments, conjectured mechanisms and other expert knowledge. Three examples are shown here.

The measured P value
A value of 0.05 is conventionally deemed 'statistically significant'; a value of 0.01 is considered 'very significant'.

After the experiment
A small P value can make a hypothesis more plausible, but the difference may not be dramatic.
Example: Southern Brown Frog

- Researcher surveys a pond for the frog
- From prior experience 80% detection | present
- No frogs observed
- If null hypothesis is frogs are absent
 - $P = 1.0$ -- Fail to reject
 - Further surveys that fail to find the frog, $p=1.0$
- If null hypothesis is frogs are present
 - $P = 0.2$ – Fail to reject
Power

• Probability of correctly rejecting the null hypothesis

• Requires that some explicit alternative hypothesis is stated
 – Parameter values
 – Variance
 – Sample size

• Often calculated as a function of sample size

• For complex models, calculate through simulation
LnL.A = function(theta,y){
 -sum(dnorm(y,f(x,theta),sd))
}

lnL.0 = function(mu,y){
 -sum(dnorm(y,mu,sd))
}

for(i in 1:nsim){
 Ey = f(x,theta) ## process model
 ysim = rnorm(N,Ey,sd) ## data model
 outA = optim(ic,lnL.A,y=ysim) ## fit alternative
 out0 = optim(ic,lnL.0,y=ysim) ## fit null
 pval[i] = 1-pchisq(2*(outA$value-out0$value),df)
}

power = sum(pval < 0.05)/nsim
Identifiability

- Data may not provide information on all parameters in a model
- Often requires restructuring model
- Not fixed by collecting more data
- Parameters often “trade-off when fitting”
- Simple examples
 - $N(\mu, \sigma^2 + \tau^2)$
 - $N(a/b, \sigma^2)$
- Occur in both Likelihood and Bayes