
  

Interval Estimation
Part II



  

● Def'n: The fraction of intervals calculated from a
large number of data sets generated by the
same process that would include the true
parameter value

● Def'n: Posterior probability that the parameter
lies within the interval

Frequentist Confidence Interval

Bayesian Credible Interval



  

Bayesian Credible Intervals

● Parameter CI:
– Analytical from inverse CDF (e.g. qnorm)

– Numerically from quantiles (R: quantile)

● NOT estimated based on standard deviation
● Not necessarily symmetric
● Requires no additional assumptions
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Bayesian Prediction

p  y '∣y =∫ p  y '∣
Likelihood of newdata

p ∣Y 
Posterior

d 

● Consider an observed data set Y and a model
with parameters q

● Want to calculate the posterior PDF of some
new data point y' 

● Need to integrate over all values q can take on
for ALL the model parameters (including
variances)



  

Bayesian Prediction Intervals

● CI of p(y'|y)
for each x

● Includes both
data and
parameter
uncertainty



  

Frequentist Confidence Interval

● Will consider four approaches to estimating
confidence interval
– Standard Error

– Likelihood Profile

– Fisher Information

– Bootstrap

● All require additional assumptions



  

● Frequentist CI
does not assume
a density centered
on the MLE

● Cannot integrate
likelihood profile

● Assumes density
centered on
upper/lower
bound and calc.
tail probabilities

● Equivalent if
symmetric
(e.g. Normal)



  

Normal CI
● Goal:

– Find m
u
 and m

l
 the

locations where the
distributions should be
centered so that they
have the desired tail
probability

● As we know at a = 0.05
(95% CI) these are
located at
+/- 1.96 s2

● Approx 1.96 SE
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Std Error Estimator

● Only approximate if not Normal
● Always symmetric
● Can lead to non-sensible estimates for other

distributions
● Choice of likelihood not equivalent to

distribution of parameter estimator
● Other methods of estimating frequentist CI

based on likelihood surface



  

Likelihood Profile



  

Likelihood Profile

● Narrows as the sample size increases
● More constrained estimate of the parameter
● Can't interpret as a PDF
● Can we use to estimate uncertainty in the

parameter, and if so HOW?



  

Likelihood Ratio Test

● Recall from Lab 4 that we compared two nested
models using the Likelihood Ratio test, which
was based on the ratio of the likelihood
(equivalently the differences in log likelihood)

● Can similarly construct a CI based on the LRT



  

Example

● Consider a likelihood function for dataset x that
has a parameter mu:   L(x|m)

● Compare the likelihood of some arbitrary m
0
 as

compared to the MLE: m
MLE

.

● LR = L(x|m
0
)/L(x|m

MLE
)

● D = -2lnL(x|m
0
) - -2lnL(x|m

MLE
)

● The test statistic D is known to be distributed
with a c2 distribution with df 1 (1 parameter)



  

● CI constructed based on difference in Deviance
from MLE

● c2(0.95,1 d.f.) --> DD ~ 3.84, DlnL ~ 1.92
– qchisq(0.95,1)

● p-value = 1-pchisq(D,1)



  



  

Exponential

L = ∏
i=1

n

e−ai

ln L = ∑
i=1

n

 ln−ai 

ML = n

∑
i=1

n

a i

= 1/a

● Produces asymmetric CI



  

Frequentist Confidence Interval

● Will consider four approaches to estimating
confidence interval
– Standard Error

– Likelihood Profile

– Fisher Information

– Bootstrap

● All require additional assumptions



  

Fisher's Information

● Uses the curvature of the ln likelihood to
estimate variance of parameter error dist'n

● Quadratic approximation of lnL (exact for N)
● C.I. is based on standard error

I=−d 2 ln L
d 2 ∣

ML

se=
1

  I 



  

Example: Normal mean

● Assume L = N(x|m,s2)

L= 1
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22 
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Example: Exponential

L=∏ exp − x i 
lnL=n ln −∑ xi

∂ lnL
∂

= n
−∑ xi

∂2 lnL

∂2 =− n

2

I= n

2

se=
ML

 n



  

Fisher's Pro/Con

● Analytical solution
– Generalization

– Requires Math

● Approximation
– Can be biased,

especially at small
sample size

● Asymptotic
– CLT assumption that

parameter dist'n is
asymptotically Normal



  

Frequentist Confidence Interval

● Will consider four approaches to estimating
confidence interval
– Standard Error

– Likelihood Profile

– Fisher Information

– Bootstrap

● All require additional assumptions



  

Bootstrap

● Monte Carlo method (numerical)
● Based on idea of generating parameter

distribution based on large number of replicate
data sets that are the same size as original 
(data random)

● Two variants
– Parametric: pseudodata

– Nonparametric: resample data



  

Non-parametric bootstrap

● Draw a replicate data set by resampling from
the original data

● Fit parameters to resample
● Repeat procedure n times
● Estimate parameter CI based on sample

quantiles
● Estimate parameter std error as sample s.d.



  

Resampling

● For CI, resample all covariates simultaneously
● For null model, resample response variable

independent of covariates
● Difficult for highly structured data
● R:   sample(x,length(x),replace=TRUE)

– Hint: For simult. sample the indices not the data

Original 1 2 3 4 5 6 7 8 9 10
Sample 1 5 3 5 1 7 9 10 8 2 4
Sample 2 4 9 5 6 5 9 3 10 10 2
...
sample N 4 10 3 9 2 9 6 5 2 6



  

lnL <- function(beta,x,y){ ### - ln likelihood
-sum(dnorm(y,beta[1] + beta[2]*x + beta[3]*x^2,beta[4],log=TRUE))
}
ic <- c(mean(y),0,0,sd(y)) ###  initial condition

outMLE <- optim(ic,lnL,x=x,y=y) ### MLE fit

### general code for non-parameteric bootstrap
nboot <- 2000
Bboot <- matrix(NA,nboot,4) ### storage
for(i in 1:nboot){
   samp <- sample(1:length(y),length(y),replace=TRUE)  ### sample
   out <- optim(ic,lnL,x=x[samp],y=y[samp]) ### fit sample
   Bboot[i,] <- out$par
}

R example: Quadratic



  



  



  

Parametric bootstrap

● Based on parameters fit to original data set
generate pseudodata with same dist'n

● Fit parameters to resample
● Repeat procedure n times
● Estimate parameter CI based on sample

quantiles
● Estimate parameter std error as sample s.d.



  

lnL <- function(beta,x,y){ ### - ln likelihood
-sum(dnorm(y,beta[1] + beta[2]*x + beta[3]*x^2,beta[4],log=TRUE))
}
ic <- c(mean(y),0,0,sd(y)) ###  initial condition

outMLE <- optim(ic,lnL,x=x,y=y) ### MLE fit
beta <- outMLE$par

### general code for non-parameteric bootstrap
nboot <- 2000
Bboot <- matrix(NA,nboot,4) ### storage
for(i in 1:nboot){
   yboot <- rnorm(n,beta[1] + beta[2]*x + beta[3]*x^2,beta[4]) ##pseudo
   out <- optim(ic,lnL,x=x,y=yboot) ### fit pseudo
   Bboot[i,] <- out$par
}

R example: Quadratic



  



  

Bootstrap Pro/Con
● No fancy math
● Code/computation (though less than MCMC)
● Easy to extend to

– Multiple parameter models

– Estimation of covariance

– Prediction

● Nonparameteric:
– Inference limited to sample

– Not for small sample size (var sample < var pop'n)

● Parameteric: assumes model is true



  



  

Classic Error Propagation

● Taylor series approximation: 

● Individual parameter variances generated from
methods discussed earlier (Fisher's I, bootstrap,
MCMC)

var [ f  x]≈∑  ∂ f
∂i


2

var [i ] 

∑
i≠ j  ∂ f

∂i
 ∂ f

∂ j
cov [i , j ]



  

Example: Regression CI

f x =01 x

Var [ f  x ]≈1⋅Var [0]x2Var [1]xCov [0, 1]

∂ f
∂0

=1
∂ f
∂1

=x



  

Example: Regression PI

f x =01 x

Var [ f  x ]≈Var [0]x2Var [1] 2xCov [ 0, 1]

∂ f
∂0

=1
∂ f
∂1

=x
∂ f
∂

=1



  



  

Frequentist Confidence Interval

● Will consider four approaches to estimating
confidence interval
– Standard Error     (+/- 1.96 se)

– Likelihood Profile (+3.84 Deviance)

– Fisher Information

– Bootstrap             (simulation)

● Model CI and PI
– Bootstrap → Monte Carlo

– Taylor Series approximation

se=
1

 I 
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