MCMC
Numerical methods for Bayes
What are the chances that a solitaire laid out with 52 cards will come out successfully?
Goal: Find the laws that govern the functioning and the interactions among nature’s living organisms.

How? Through a model, $M(\theta)$

What do we know? $P(\theta)$

What do we have? Some data (Y)

What do we want to know? $P(\theta|Y) = \frac{P(Y|\theta) P(\theta)}{P(Y)}$
Rejection sampling

Model:
\[y = b + a \times x \]

Priors:
\[P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \]
\[P(b) \sim U[b_{\text{min}}, b_{\text{max}}] \]
Rejection sampling

Model:
\[y = b + a \times x + \varepsilon \]
y \sim N(b + a \times x, \text{sd})

Priors:
\[P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \]
\[P(b) \sim U[b_{\text{min}}, b_{\text{max}}] \]
\[P(\text{sd}) \sim U[\text{sd}_{\text{min}}, \text{sd}_{\text{max}}] \]
Rejection sampling

Model:
\[y \sim N(a \times x, 10) \]

Priors:
\[P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \]
\[b = 0 \]
\[\text{sd} = 10 \]
Rejection sampling

Model:
\[y \sim N(a \times x, 10) \]

Priors:
\[P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \]
\[b = 0 \]
\[\text{sd} = 10 \]
Rejection sampling

Model:
\(y \sim \mathcal{N}(a \times x, 10) \)

Priors:
\[
P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \\
b = 0 \\
sd = 10
\]

1. draw random values from priors
2. calculate likelihood
 i.e. the probability of observing data \(y \) given the model and drawn parameter values:
 \[
y \sim \mathcal{N}(a_1 \times x, 10)
 \]
Rejection sampling

Model:
\(y \sim N(a \times x, 10) \)

Priors:
\(P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \)
\(b = 0 \)
\(sd = 10 \)

1. Draw random values from priors
2. Calculate likelihood
 i.e. the probability of observing data \(y \) given the model and drawn parameter values:

\[
y \sim N(a_{1} \times x, 10)
\]

\[
1 \quad e^{-\frac{(y-(b+a_{1}\times x))^{2}}{2sd^{2}}}
\]

\[
\frac{1}{sd\sqrt{2\pi}}
\]

in R: `sum(dnorm(y, mean = 0 + a_{1}\times x, sd = 10))`
Rejection sampling

1. draw random values from priors
2. calculate likelihood
3. accept value proportional to likelihood

Model:
\(y \sim N(ax, 10) \)

Priors:
\(P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \)
\(b = 0 \)
\(\text{sd} = 10 \)

\[
P(\theta | Y) = \frac{P(Y|\theta) P(\theta)}{P(Y)}
\]
Rejection sampling

Model:
\[y \sim N(ax, 10) \]

Priors:
\[P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \]
\[b = 0 \]
\[\text{sd} = 10 \]

1. draw random values from priors
2. calculate likelihood
3. accept value proportional to likelihood

\[P(a\mid y) \propto P(y\mid a) P(a) \]

unnormalized posterior PDF
Rejection sampling

Model:
\(y \sim N(a \times x, 10) \)

Priors:
\(P(a) \sim U[a_{\text{min}}, a_{\text{max}}] \)
\(b = 0 \)
\(\text{sd} = 10 \)

1. draw random values from priors
2. calculate likelihood
3. accept value proportional to likelihood
 a. Sample many values from prior
 \(\text{Asamples} \leftarrow \text{runif}(1000, a_{\text{min}}, a_{\text{max}}) \)
Rejection sampling

Model:
\[y \sim N(a \cdot x, 10) \]

1. Draw random values from priors
2. Calculate likelihood
3. Accept value proportional to likelihood

a. Sample many values from prior
b. Calculate unnormalized posterior values

```
for(i in 1:1000)
  LL        <- sum(dnorm(y, mean = Asamples[i]*x, sd =10))
  prior     <- dunif(Asamples[i], a_{min}, a_{max})
  Psamples  <- LL * prior
```
Rejection sampling

1. draw random values from priors
2. calculate likelihood
3. accept value proportional to likelihood

- Sample many values from prior
- Calculate unnormalized posterior values

This is proportional to what I want to sample from
Rejection sampling

1. draw random values from priors
2. calculate likelihood
3. accept value proportional to likelihood

- Sample many values from prior
- Calculate unnormalized posterior values
- Choose a distribution from which sampling is easy

\[\mathcal{N}(5,5) : \text{proposal or envelope distribution} \]
Rejection sampling

1. Draw random values from priors
2. Calculate likelihood
3. Accept value proportional to likelihood

a. Sample many values from prior
b. Calculate unnormalized posterior values
c. Choose a distribution from which sampling is easy
d. Determine scaling constant: \(C = \max\left(\frac{g(a)}{f(a)}\right) \)
Rejection sampling

- Sample many values from prior
- Calculate unnormalized posterior values
- Choose a distribution from which sampling is easy
- Determine scaling constant: \(C = \max(g(a)/f(a)) \)
- Scale envelope distribution

You only need to determine “\(C \times f(a) \)” once!
Rejection sampling

1. draw random value from \(f(a) \)
2. calculate \(g(a) \) and \(f(a) \)
3. calculate \(u \)

\[
P(a_1 \mid y) \propto P(y \mid a_1) \cdot P(a_1)
\]

\[
g(a_1) = \frac{\text{sum}(\text{dnorm}(y, \text{mean} = 0 + a_1 \cdot x, \text{sd} = 10)) \ast \text{dunif}(a_1, a_{\text{min}}, a_{\text{max}})}{\text{diff}(\text{dnorm}(a_1, \text{mean} = 5, \text{sd} = 5))}
\]

\[
f(a_1) = \text{dnorm}(a_1, \text{mean} = 5, \text{sd} = 5)
\]

\[
u = \frac{g(a_1)}{C \ast f(a_1)}
\]
Rejection sampling

Draw random value: \(a_1 = 4 \)

Calculate \(f(a) \) and \(g(a) \):

\[g(a_1), f(a_1) \]

Calculate \(u \):

\[u = \frac{g(a_1)}{C \cdot f(a_1)} \]
Rejection sampling

Draw random value: $a_1 = 4$

Calculate $f(a)$ and $g(a)$: $g(a_1), f(a_1)$

Calculate u: $u = \frac{g(a_1)}{C* f(a_1)}$

Accept the proposed a_1 with probability u based on a Bernoulli trial:

\[
\text{if } \text{runif}(1,0,1) < u \text{ accept}
\]
\[
\text{else reject}
\]
Rejection sampling

Unnormalized Posterior

Posterior PDF
Rejection sampling

Unnormalized Posterior

Posterior PDF

0 + 5*x
Rejection sampling

Importance sampling weights

\[w = 0.00548 \]
\[w = 1.59 \times 10^{-8} \]
\[w = 9.65 \times 10^{-6} \]
\[w = 0.371 \]
\[w = 0.103 \]
\[w = 1.01 \times 10^{-8} \]
\[w = 0.111 \]
\[w = 1.92 \times 10^{-9} \]
\[w = 0.0126 \]
\[w = 1.1 \times 10^{-51} \]
Rejection sampling

Pros:
- Parallelizable
- Easy to implement

Cons:
- Suffers from curse of dimensionality
• Perturb parameters
• Accept if new params are supported more (*also accept sometimes even if not)
• Otherwise keep old parameters
Markov Chain Monte Carlo

1) Start from some initial parameter value
2) Evaluate the unnormalized posterior
3) Propose a new parameter value
4) Evaluate the new unnormalized posterior
5) Decide whether or not to accept the new value
6) Repeat 3-5
Markov Chain Monte Carlo

1) Start from some initial parameter value
2) Evaluate the unnormalized posterior
3) Propose a new parameter value
4) Evaluate the new unnormalized posterior
5) Decide whether or not to accept the new value
6) Repeat 3-5
• Advantages
 – Multi-dimensional
 – Can be applied to
 • Whole joint PDF
 • Each dimension iteratively
 • Groups of parameters
 – Simple
 – Robust

• Disadvantages
 – Sequential samples not independent
 – Computationally intensive
 – Discard “Burn – in” period before convergence
 – Assessing convergence
How to assess convergence?

- Visual inspection
How to assess convergence?

- Visual inspection
- Multiple chains
How to assess convergence?

- Visual inspection
- Multiple chains
- Convergence stats
Convergence Statistics

- Brooks Gelman Rubin
 - Within vs among chain variance
 - Should converge to 1

\[\hat{R} = \frac{B}{W} \]
Convergence Statistics

Trace Plot

GBR Diagnostic

MCMC Sample

MCMC Sample

mu

log(Shrink)
How to assess convergence?

- Visual inspection
- Multiple chains
- Convergence stats
- Quantiles
Quantiles
How to assess convergence?

- Visual inspection
- Multiple chains
- Convergence stats
- Quantiles
- Autocorrelation
Autocorrelation

- lag-\(k\) autocorrelation is the correlation between every sample and the sample \(k\) steps before
- AR should go down as \(k\) increases, i.e. samples can be considered as independent
How to assess convergence?

- Visual inspection
- Multiple chains
- Convergence stats
- Quantiles
- Autocorrelation
- Summary statistics
Summary Statistics

Analytical:

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>43.09901</td>
<td>9.95037</td>
</tr>
</tbody>
</table>

MCMC:

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Naive SE</th>
<th>Time-series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>43.05504</td>
<td>9.28108</td>
<td>0.05648</td>
<td>0.74503</td>
</tr>
</tbody>
</table>

Quantiles:

<table>
<thead>
<tr>
<th></th>
<th>2.5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24.98</td>
<td>36.46</td>
<td>43.39</td>
<td>49.99</td>
<td>60.01</td>
</tr>
</tbody>
</table>
How to assess convergence?

- Visual inspection
- Multiple chains
- Convergence stats
- Quantiles
- Autocorrelation
- Summary statistics
- Effective sample size
- Acceptance rate