

Numerical methods for Bayes

Numerical Methods for Bayes

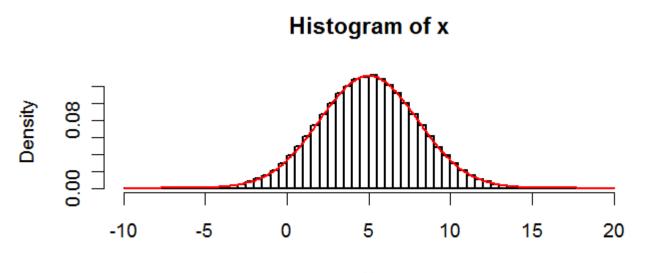
$$P(\theta|y) = \frac{P(y|\theta)P(\theta)}{\int_{-\infty}^{\infty} P(y|\theta)P(\theta)d\theta}$$

- Not just optimization
- Need to integrate denominator
 - Numerical Integration
- Would also like to know the mean, median, mode, variance, quantiles, confidence intervals, etc.

Idea:

Random samples from the posterior

- Approximate PDF with the histogram
- Performs Monte Carlo Integration
- Allows all quantities of interest to be calculated from the sample (mean, quantiles, var, etc)



	TRUE	Sample
mean	5.000	5.000
median	5.000	5.004
var	9.000	9.006
Lower CI	-0.880	-0.881
Upper CI	10.880	10.872

Outline

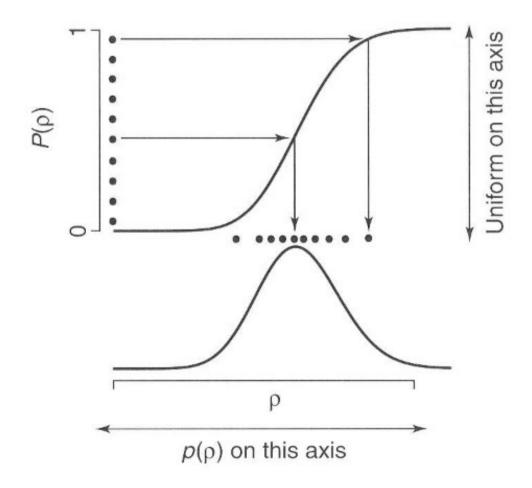
- Different numerical techniques for sampling from the posterior
 - Inverse Distribution Sampling
 - Rejection Sampling & SMC
 - Markov Chain-Monte Carlo (MCMC)
 - Metropolis
 - Metropolis-Hastings
 - Gibbs sampling
- Sampling conditionals vs full model
- Flexibility to specify complex models

How do we generate a random number from a PDF?

- Exist for most standard distributions
- Posteriors often non-standard
- Indirect Methods
 - First sample from a different distribution
 - Rejection sampling, Metropolis, M-H
- Direct Methods
 - Inverse CDF
 - Univariate sampling of multivariate or conditional

Inverse CDF sampling

- 1) Sample from a uniform distribution
- 2) Transform sample using inverse of CDF, F⁻¹(x)



Example: Exponential

- The exponential CDF is: $F(x)=1-e^{-\lambda x}$
- We solve for F⁻¹ as

$$p=1-e^{-\lambda x}$$

$$1-p=e^{-\lambda x}$$

$$\ln(1-p)=-\lambda x$$

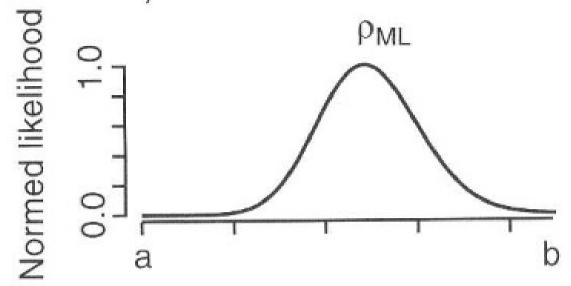
$$x=F^{-1}(p)=-\frac{\ln(1-p)}{\lambda}$$

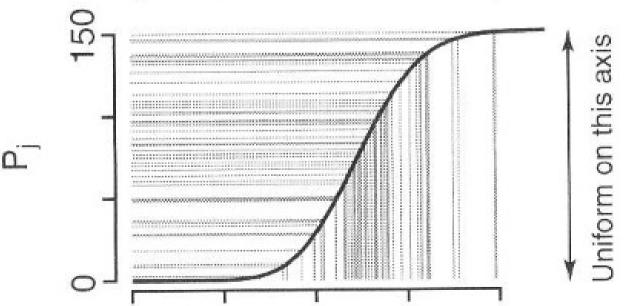
Draw p ~ Unif(0,1), calculate x

Approximate inverse sampling

- Exact inverse sampling requires CDF & ability to solve for inverse
- Approximation
 - Solve for f(x) across a discrete sequence of x
 - Determine cumulative sum to approx F(x)
 - Draw Z ~ unif(0,max)
 - Find the value of x for which Z == cumsum(f(x))
- Approximation performs integration as a Riemann sum

a) Likelihood normalized to maximum value





Univariate sampling of multivariate or conditional distribution

Multivariate

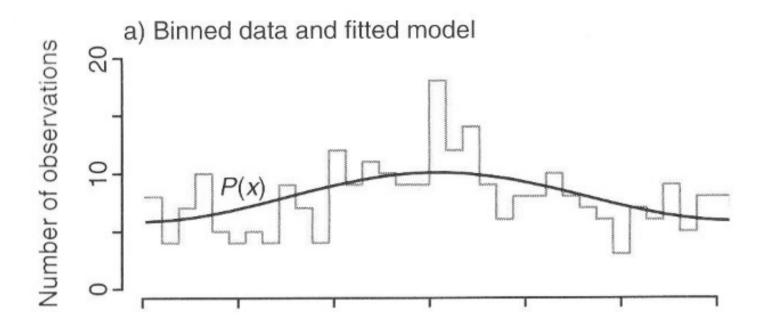
- Multivariate normal based on Normal
- Multinomial based on Binomial

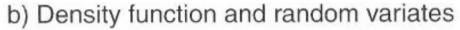
Conditional

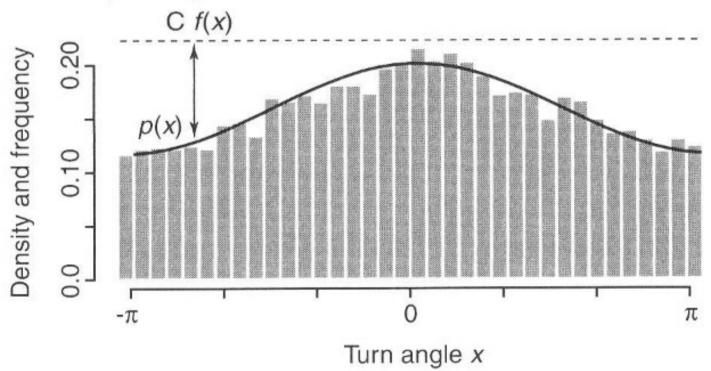
- Sample from the first distribution
- Sample from the second conditioned on the first
- Examples
 - NBin = Pois(y|λ)Gamma(λ |a,b)
 - Students t = Normal(x | μ , σ ²) IG(σ ²|a,b)

Rejection Sampling

- Want to sample from some distribution g(x)
- Requires that we can sample from a second distribution f(x) such that C*f(x) > g(x) for all x
- Algorithm
 - Draw a random value from f(x)
 - Calculate the density g(x) and f(x) at that x
 - Calculate a = g(x)/[C*f(x)]
 - Accept the proposed x with probability a based on a Bernoulli trial
 - If rejected, repeat by proposing a new x...







Sequential Monte Carlo (SMC)

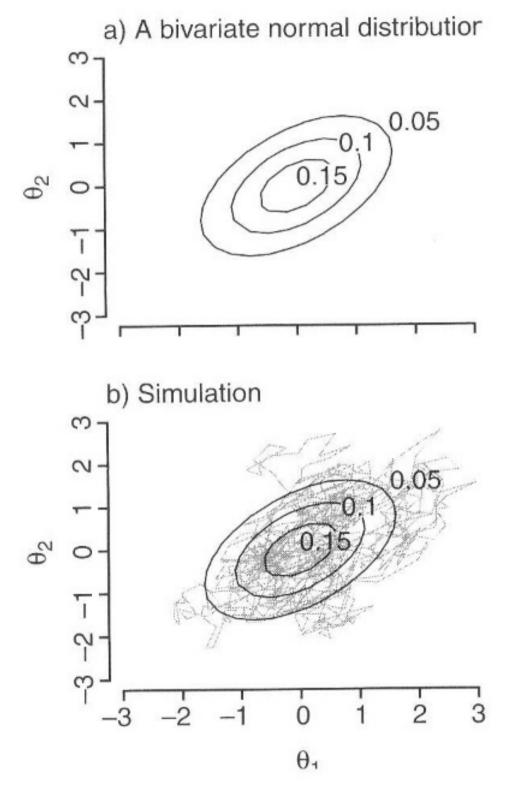
- Propose LARGE number of samples from prior
- Calculate Likelihood at each, L_i
- Approximate normalizing constant P(Y) α ΣL
- Calculate weights w = L_i/P(Y)
- Resample proportional to weights (Inv CDF)
- Risks:
 - If n is small, weights concentrated
 - Harder in higher dimensions, broad priors
- Through time = Particle Filter

Markov Chain Monte Carlo

- 1) Start from some initial parameter value
- 2) Evaluate the unnormalized posterior
- 3) Propose a new parameter value
- 4) Evaluate the new unnormalized posterior
- 5) Decide whether or not to accept the new value
- 6) Repeat 3-5

Markov Chain Monte Carlo

- Looks remarkably similar to optimization
 - Evaluating posterior rather than just likelihood
 - "Repeat" does not have a stopping condition
 - Criteria for accepting a proposed step
 - Optimization diverse variety of options but no "rule"
 - MCMC stricter criteria for accepting
- Performs random walk through PDF
- Converges "in distribution" rather than to a single point



Example

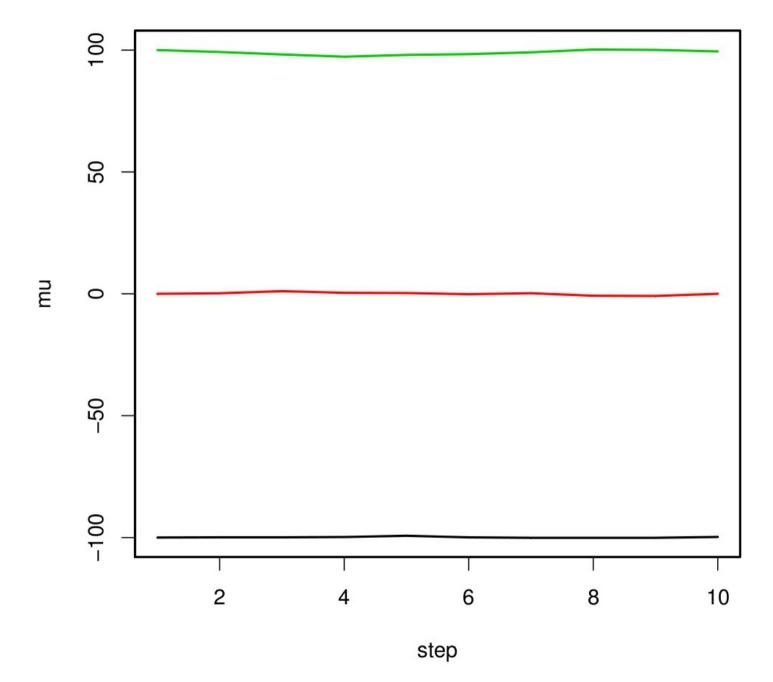
Normal with known variance, unknown mean

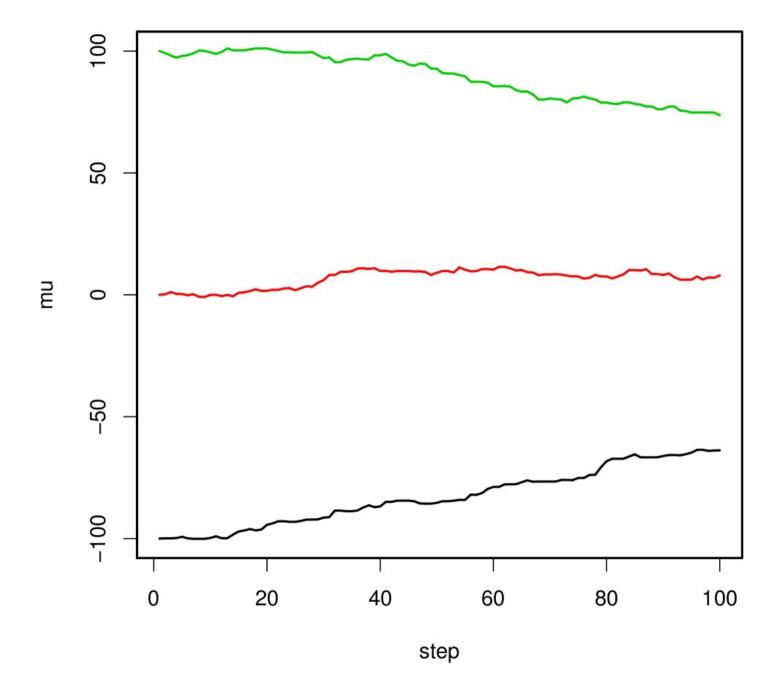
- Prior: N(53,10000)

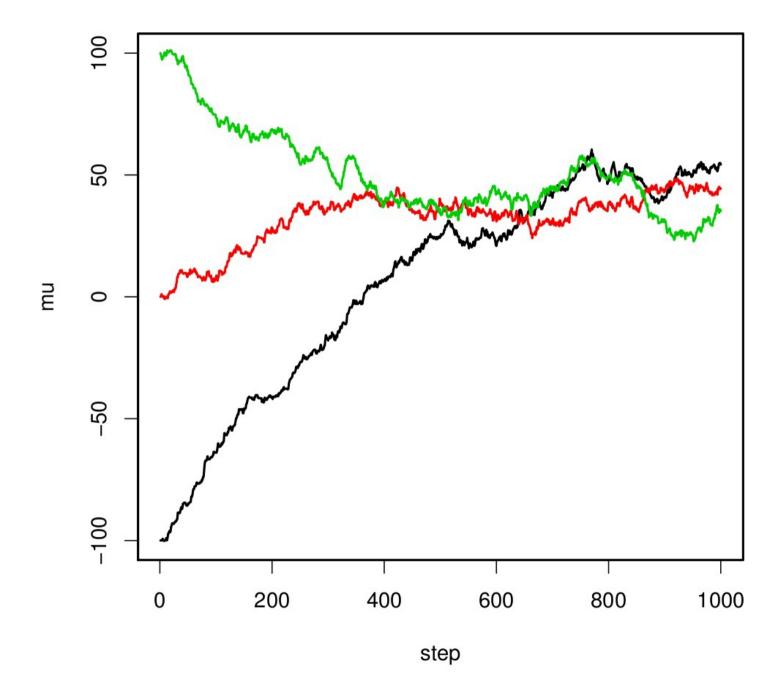
- Data: y = 43

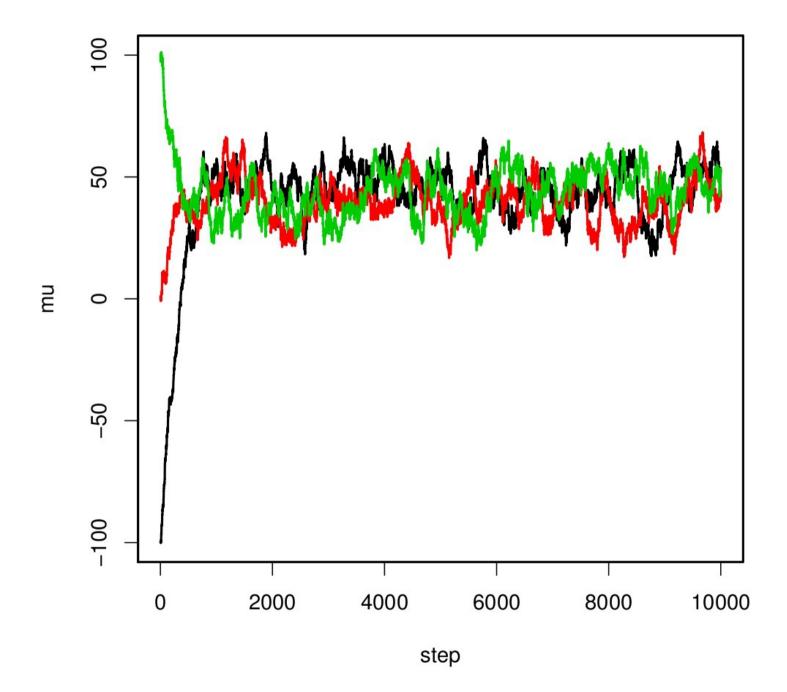
- Known variance: 100

- Initial conditions, 3 chains starting at -100, 0, 100

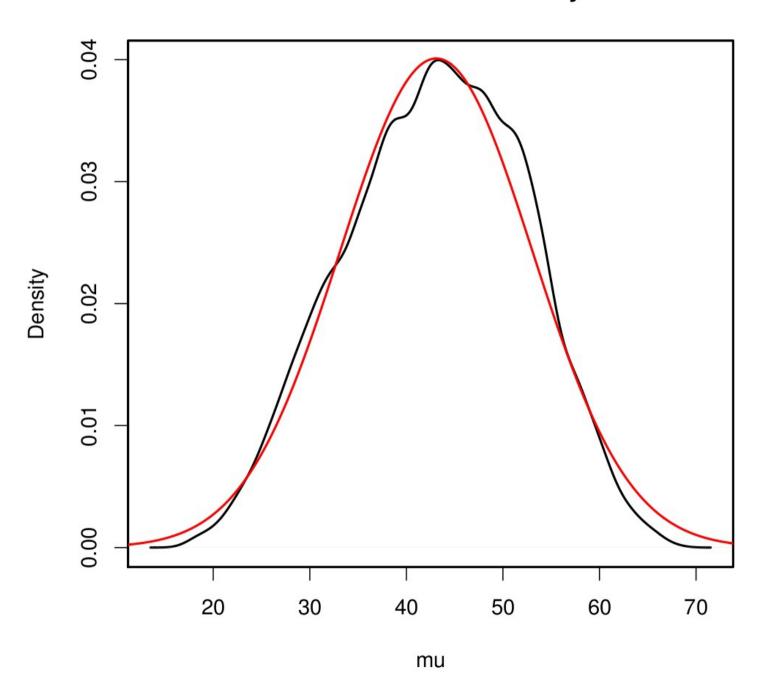








MCMC Posterior Density



Advantages

- Multi-dimensional
- Can be applied to
 - Whole joint PDF
 - Each dimension iteratively
 - Groups of parameters
- Simple
- Robust

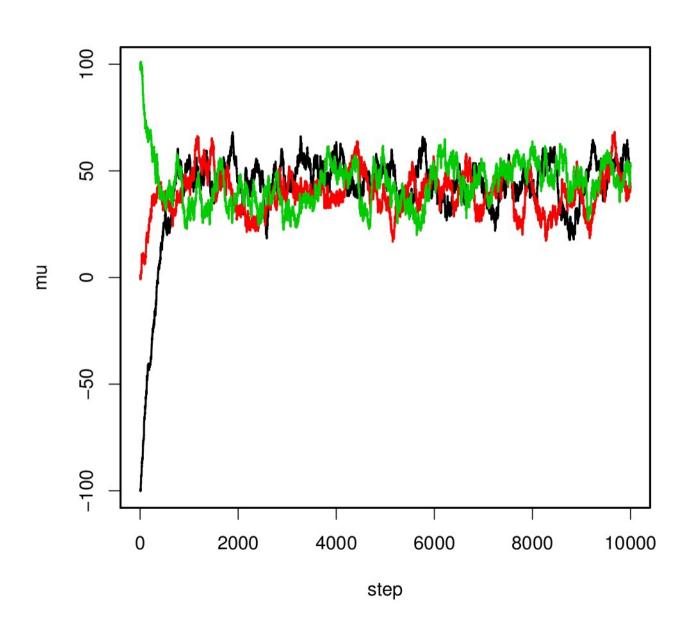
Disadvantages

- Sequential samples not independent
- Computationally intensive
- Discard "Burn in" period before convergence
- Assessing convergence

Convergence

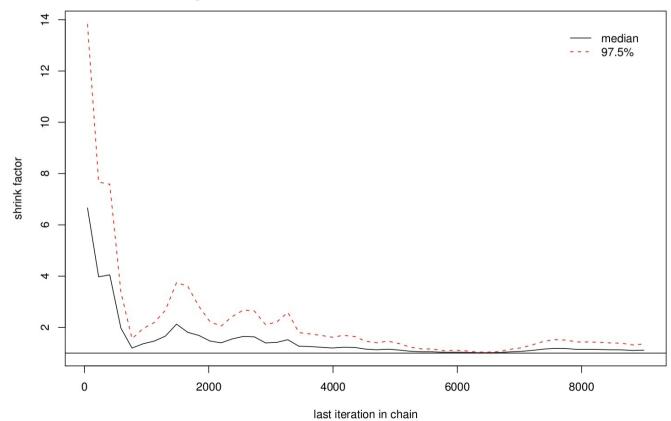
- Generally can not be "proved"
- Why MCMC can be "dangerous," especially in the hands of the untrained
- Assessed by examining MCMC time-series
 - Visual inspection
 - Multiple chains
 - Convergence statistics
 - Acceptance rate
 - Auto-correlation

Visual inspection / multiple chains

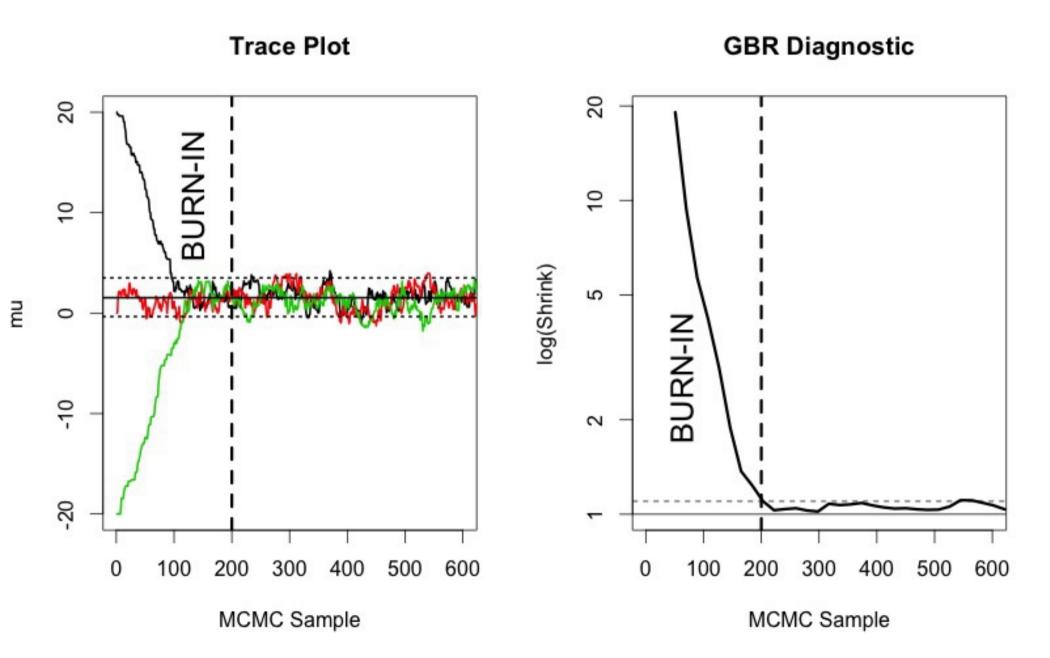


Convergence Statistics

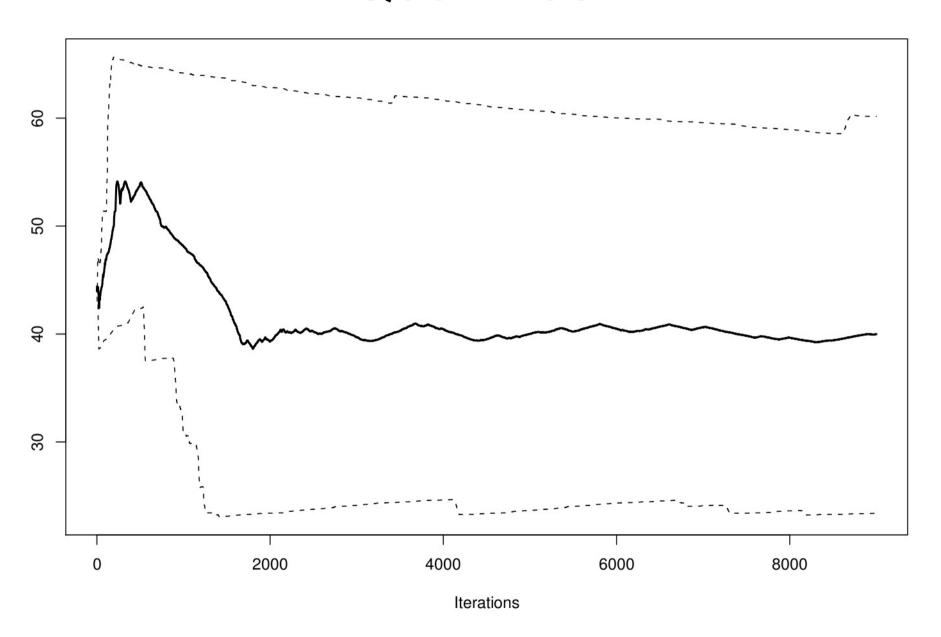
- Brooks Gelman Rubin
 - Within vs among chain variance
 - Should converge to 1



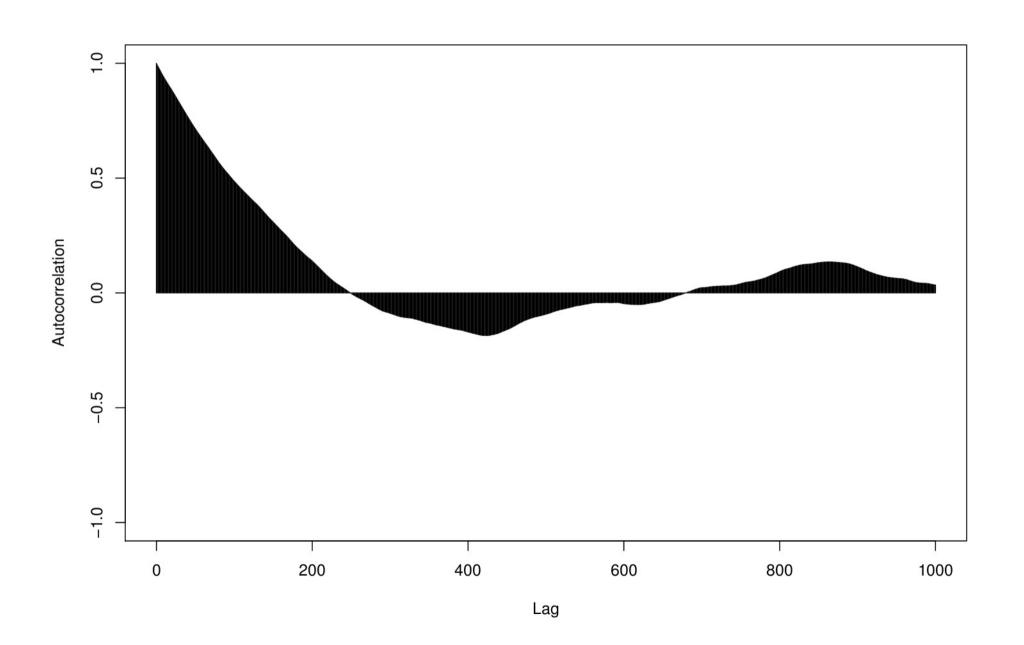
Convergence Statistics



Quantiles



Autocorrelation



Acceptance Rate

- Metropolis & Metropolis Hastings
 - Aim for 30-70%
 - Too low = not mixing
 - Too high = small steps, slow mixing
 - Example: 97%
- Gibbs sampling
 - Always 100%

Summary Statistics

Analytical:

Mean SD

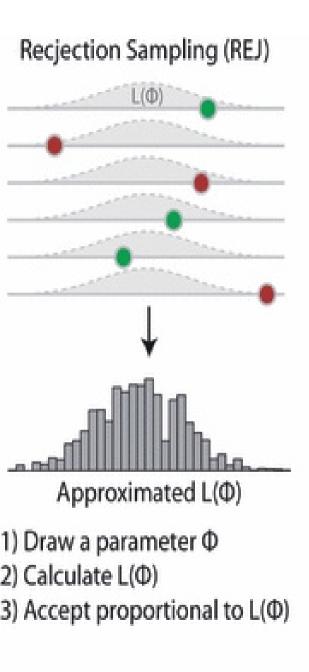
43.09901 9.95037

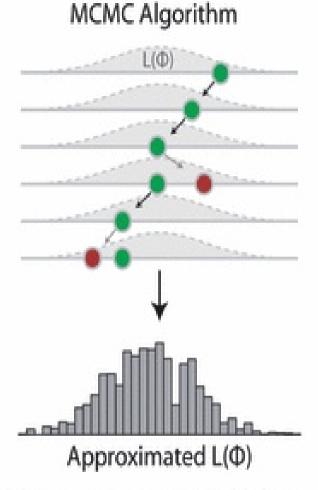
MCMC:

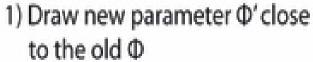
Mean SD Naive SE Time-series 43.05504 9.28108 0.05648 0.74503

Quantiles:

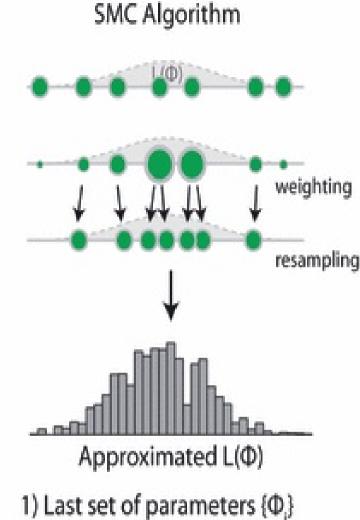
2.5% 25% 50% 75% 97.5% 24.98 36.46 43.39 49.99 60.01







- 2) Calculate L(Φ')
- Jump proportional to L(Φ')/L(Φ)



3) Draw new $\{\Phi_i\}$ based on the ω_i

2) Assign weight ω, proportional

to L(Φ)