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Numerical Methods for Bayes

● Would also like to know the mean, median,
mode, variance, quantiles, confidence intervals,
etc.

P ∣y = P  y∣P 

∫
−∞

∞

P  y∣P d 

● Need to integrate denominator
– Numerical Integration

● Not just optimization



  

Idea: 
Random samples from the posterior
● Approximate PDF with the histogram
● Performs Monte Carlo Integration
● Allows all quantities of interest to be calculated

from the sample (mean, quantiles, var, etc)

TRUE Sample
mean 5.000 5.000
median 5.000 5.004
var 9.000 9.006
Lower CI -0.880 -0.881
Upper CI 10.880 10.872



  

Outline

● Different numerical techniques for sampling
from the posterior
– Inverse Distribution Sampling

– Rejection Sampling & SMC

– Markov Chain-Monte Carlo (MCMC)
● Metropolis
● Metropolis-Hastings
● Gibbs sampling

● Sampling conditionals vs full model
● Flexibility to specify complex models



  

How do we generate a random
number from a PDF?

● Exist for most standard distributions
● Posteriors often non-standard
● Indirect Methods

– First sample from a different distribution

– Rejection sampling, Metropolis, M-H

● Direct Methods
– Inverse CDF

– Univariate sampling of multivariate or conditional



  

Inverse CDF sampling

1) Sample from a uniform distribution

2) Transform sample using inverse of CDF, F-1(x)



  

Example: Exponential

● The exponential CDF is: 
● We solve for F-1 as

● Draw p ~ Unif(0,1), calculate x

F x =1−e− x

1−p=e− x

ln 1−p=− x

x=F−1 p=− ln 1−p


p=1−e− x



  

Approximate inverse sampling

● Exact inverse sampling requires CDF & ability
to solve for inverse

● Approximation
– Solve for f(x) across a discrete sequence of x

– Determine cumulative sum to approx F(x)

– Draw Z ~ unif(0,max)

– Find the value of x for which Z == cumsum(f(x))

● Approximation performs integration as a
Riemann sum



  



  

Univariate sampling of multivariate
or conditional distribution

● Multivariate
– Multivariate normal based on Normal

– Multinomial based on Binomial

● Conditional
– Sample from the first distribution

– Sample from the second conditioned on the first

– Examples
● NBin = Pois(y|l)Gamma(l |a,b)
● Students t = Normal(x | m,s2) IG(s2|a,b) 



  

Rejection Sampling

● Want to sample from some distribution g(x)
● Requires that we can sample from a second

distribution f(x) such that C*f(x) > g(x) for all x
● Algorithm

– Draw a random value from f(x)

– Calculate the density g(x) and f(x) at that x

– Calculate a = g(x)/[C*f(x)]

– Accept the proposed x with probability a based on a
Bernoulli trial

– If rejected, repeat by proposing a new x...



  



  

Sequential Monte Carlo (SMC)

● Propose LARGE number of samples from prior

● Calculate Likelihood at each, L
i

● Approximate normalizing constant P(Y) a SL
i

● Calculate weights w = L
i
/P(Y)

● Resample proportional to weights (Inv CDF)
● Risks:

– If n is small, weights concentrated

– Harder in higher dimensions, broad priors

● Through time = Particle Filter



  

Markov Chain Monte Carlo

1) Start from some initial parameter value

2) Evaluate the unnormalized posterior

3) Propose a new parameter value

4) Evaluate the new unnormalized posterior

5) Decide whether or not to accept the new value

6) Repeat 3-5



  

Markov Chain Monte Carlo

● Looks remarkably similar to optimization
– Evaluating posterior rather than just likelihood

– “Repeat” does not have a stopping condition

– Criteria for accepting a proposed step
● Optimization – diverse variety of options but no “rule”
● MCMC – stricter criteria for accepting

● Performs random walk through PDF
● Converges “in distribution” rather than to a

single point



  



  

Example

● Normal with known variance, unknown mean
– Prior: N(53,10000)

– Data: y = 43

– Known variance: 100

– Initial conditions, 3 chains starting at -100, 0, 100



  



  



  



  



  



  

● Advantages
– Multi-dimensional

– Can be applied to
● Whole joint PDF
● Each dimension iteratively
● Groups of parameters

– Simple

– Robust

● Disadvantages
– Sequential samples not independent

– Computationally intensive

– Discard “Burn – in” period before convergence

– Assessing convergence



  

Convergence

● Generally can not be “proved”
● Why MCMC can be “dangerous,” especially in

the hands of the untrained
● Assessed by examining MCMC time-series

– Visual inspection

– Multiple chains

– Convergence statistics

– Acceptance rate

– Auto-correlation



  

Visual inspection / multiple chains



  

Convergence Statistics

● Brooks Gelman Rubin
– Within vs among chain variance

– Should converge to 1



  

Convergence Statistics



  

Quantiles



  

Autocorrelation



  

Acceptance Rate

● Metropolis & Metropolis – Hastings
– Aim for 30-70%

– Too low = not mixing

– Too high = small steps, slow mixing

– Example: 97%

● Gibbs sampling
– Always 100%



  

Summary Statistics

Analytical:

          Mean             SD
   43.09901        9.95037

MCMC:

          Mean             SD         Naive SE        Time-series
   43.05504        9.28108       0.05648           0.74503

Quantiles:
 2.5%      25%       50%      75%      97.5%
24.98     36.46     43.39     49.99     60.01



  

Hartig et al 2011 Ecology Letters
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