
Providing Soft Bandwidth Guarantees Using Elastic TCP-based Tunnels�

Mina Guirguis Azer Bestavros Ibrahim Matta Niky Riga Gali Diamant Yuting Zhang

Computer Science Department
Boston University

Boston, MA 02215, USA
fmsg,best,matta,inki,gali,danazhg@cs.bu.edu

Abstract

The best-effort nature of the Internet poses a signifi-
cant obstacle to the deployment of many applications that
require guaranteed bandwidth. In this paper, we present
a novel approach that enables two edge/border routers—
which we call Internet Traffic Managers (ITM)—to use an
adaptive number of TCP connections to set up a tunnel of
desirable bandwidth between them. The number of TCP
connections that comprise this tunnel is elastic in the sense
that it increases/decreases in tandem with competing cross
traffic to maintain a target bandwidth. An origin ITM would
then schedule incoming packets from an application requir-
ing guaranteed bandwidth over that elastic tunnel. Unlike
many proposed solutions that aim to deliver soft QoS guar-
antees, our elastic-tunnel approach does not require any
support from core routers (as with IntServ and DiffServ);
it is scalable in the sense that core routers do not have to
maintain per-flow state (as with IntServ); and it is read-
ily deployable within a single ISP or across multiple ISPs.
To evaluate our approach, we develop a flow-level control-
theoretic model to study the transient behavior of estab-
lished elastic TCP-based tunnels. The model captures the
effect of cross-traffic connections on our bandwidth alloca-
tion policies. Through extensive simulations, we confirm the
effectiveness of our approach in providing soft bandwidth
guarantees.

1. Introduction
The scalability of the Internet hinges on our ability to

tame the unpredictability associated with its open architec-
ture. Significant and unpredictable changes in network dy-
namics (and hence performance) make it harder on appli-
cations to adequately perform and even adapt if they are
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designed to do so. To that end, significant efforts have
been expended in order to extend the basic best-effort In-
ternet Protocol (IP) architecture so it provides hard or soft
performance guarantees (on bandwidth, delay, loss, etc.)
Such performance guarantees are needed by applications
sensitive to Quality-of-Service (QoS), e.g. real-time, video
streaming and games.

The IntServ architecture [3] extends IP to provide hard per-
formance guarantees to data flows by requiring the par-
ticipation of every router in a per-flow resource allocation
protocol. The need to keep per-flow state at every router
presents significant scalability problems, which makes it
quite expensive to implement. To that end, the DiffServ
architecture [2] provides a solution that lies between the
simple but QoS-oblivious IP, and the QoS-aware but ex-
pensive IntServ solution. DiffServ encompasses the scal-
able philosophy of IP [16] in pushing more functionality to-
ward the edges leaving the core of the network as simple as
possible. Nevertheless, DiffServ has not yet been success-
ful in being widely deployed by Internet Service Providers
(ISPs). One reason is that DiffServ solutions still require
some support from core routers (albeit much less than that
of IntServ solutions). For example, the DiffServ solution
proposed in [10] requires the use and administration of a
dual (weighted) Random Early Drop (RED) queue manage-
ment in core routers.

In addition to the need of IntServ-based and DiffServ-based
solutions for network/router support, such solutions typi-
cally assume that all flows going through the network are
managed.1 For example, with both IntServ and DiffServ,
there are no provisions for ensuring fairness amongst un-
managed best-effort flows to effectively use excess band-
width in the network. We believe this to be a main draw-
back of these approaches as they do not lend themselves to
incremental deployment on a wide-scale.

1For instance, typical DiffServ solutions assume that all edge routers
perform necessary admission control and packet classification.



Guaranteed Throughput over Best-Effort Networks: In
this paper, we investigate a solution that enables the de-
livery of soft bandwidth guarantees through the use of a
best-effort, QoS-oblivious networking infrastructure. Un-
like both IntServ and DiffServ, our approach does not re-
quire any modifications to core routers and is designed in
such a way so as it may co-exist with best-effort traffic.
Our approach for delivering soft bandwidth guarantees be-
tween two points, is to adaptively adjust the demand from
the underlying best-effort network so as to match the re-
quested QoS. We do so in a way that is consistent with
the proper use of the network—namely, through the use of
the Transmission Control Protocol (TCP) [4] for bandwidth
allocation. Specifically, to maintain guaranteed bandwidth
between any two points in the network, our approach calls
for the establishment of an elastic tunnel between these
points.2 An elastic tunnel is simply a set of TCP connec-
tions between two points whose cardinality is dynamically
adjusted in real-time so as to maintain a desirable target
bandwidth. Typically, the end-points of this elastic tunnel
would be edge routers within a single ISP, or in different
ISPs; we call these edge routers Internet Traffic Managers
(ITM). We refer to the set of TCP connections making up
an ITM-to-ITM elastic tunnel as the ITM-TCP connections
to distinguish them from user TCP connections originating
and terminating at end-hosts. Figure 1 depicts the general
model we consider throughout this paper.
Example Deployments:As we hinted above, elastic TCP-
based tunnels could be established between ITMs within the
same ISP, or between ITMs in different ISPs. Intra-ISP tun-
nels could be used as a mechanism to satisfy a certain Ser-
vice Level Agreement (SLA) for a given customer on an
existing best-effort (i.e. QoS-oblivious) network infrastruc-
ture. For example, an ISP with a standard best-effort IP in-
frastructure could offer its customers a service that guaran-
tees a minimum bandwidth between specific locations (e.g.,
the endpoints of a Virtual Private Network (VPN) of an or-
ganization). Inter-ISP tunnels could be used as a mech-
anism to satisfy a desirable QoS (namely bandwidth) be-
tween two points without requiring infrastructural support
from the ISPs through which such tunnels will go through
(beyond simple accounting of the aggregate volume of traf-
fic traversing the network).
Notice that for both intra-ISP and inter-ISP deployments,
and since the underlying network infrastructure is assumed
to be a common IP infrastructure, it is mandatory that the
envisioned “elasticity” be implemented in a manner that
will not trigger network mechanisms that protect against
unresponsive flows (e.g., TCP unfriendly flows). In other
words, to a core router, the constituent flows of an elastic
tunnel must be indistinguishable from other TCP flows.

2Note that other performance metrics such as delay and loss can be
controlled through these elastic soft-bandwidth-guaranteed tunnels.
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Figure 1. Elastic TCP-based Tunnel between
ITMs

Without loss of generality, and for ease of presentation, in
this paper we will focus on intra-ISP tunnels, with the un-
derstanding that all our results and observations are appli-
cable to inter-ISP settings.
Paper Overview and Outline: The rest of the paper is or-
ganized as follows. In Section 2, we present our proposed
architecture and its basic components. In Section 3, we
present a flow-level control-theoretic model focusing on the
transient behavior of our elastic TCP-based tunnels. Sec-
tion 4 describes our simulations through ns-2 [6]. We re-
visit related work in Section 5. Section 6 concludes with
a summary. Due to space limitation, we refer the reader to
[9] for details on the architecture/implementation and more
simulation results.

2. Overview and Architecture of ITM
Consider n regular user connections between sending

and receiving end-hosts, all passing through two ITMs as
depicted in Figure 1. One can think of these two ITMs
as the gateways in a VPN, for example. Our main goal
is to provide a soft-bandwidth-guaranteed tunnel for these
user flows over an Internet path of bottleneck capacity C,
which is also shared by another set of x flows, represent-
ing cross traffic. In this paper, we only consider user and
cross-traffic connections to be TCP connections since TCP
traffic is measured as constituting the majority of the bytes
flowing over the Internet today [7]. These x cross-traffic
connections present a challenge: as x keeps changing, the
bandwidth allocation for the n user-TCP flows keeps chang-
ing in tandem. So an important question is whether it is pos-
sible to “counter” the change in x so as to ensure that the n
user flows are able to maintain a desirable bandwidth.
Clearly without the intervention of ITMs, the answer to the
above question is no. When different flows share a link,
the effect of each individual flow (or an aggregate of flows)
affects the rest since all are competing for a fixed amount
of resources. However, if the ITMs dynamically maintain
a number m of open TCP connections between them, they
can provide a positive pressure that would equalize the pres-
sure caused by the cross-traffic connections, if the latter oc-
curs. Since m will be changing over time, we describe the
ITM-to-ITM tunnel as elastic. Note that the origin ITM can
decide to reduce m (i.e. relieve pressure) if x goes down—
the reason is that as long as the tunnel is achieving its tar-



get bandwidth, releasing extra bandwidth should improve
the performance of cross-traffic connections, which is in the
spirit of best-effort networking.
To illustrate our notion of elastic tunnels and the issues in-
volved, consider an ITM-to-ITM tunnel going through a
single bottleneck link. Under normal load, the behavior of
the bottleneck can be approximated by Generalized Proces-
sor Sharing (GPS) [14], i.e. each TCP connection receives
the same fair share of resources. Thus, each TCP connec-
tion ends up with C

m+x bandwidth. This, in turn, gives the
m ITM-TCP flows, or collectively the elastic ITM-to-ITM
tunnel, a bandwidth of Cm

m+x . As the origin ITM increasesm
by opening more TCP connections to the destination ITM,
the tunnel can grab more bandwidth. If x increases, and the
ITMs measure a tunnel’s bandwidth below a target value
(sayB�), thenm is increased to push back cross-traffic con-
nections. If x decreases, and the ITMs measure a tunnel’s
bandwidth above B�, then m is decreased for the good of
cross-traffic connections. It is important to note that the ori-
gin ITM should refrain from unnecessarily increasing m,
thus achieving a tunnel’s bandwidth above B�, since an un-
necessary increase in the total number of competing TCP
flows reduces the share of each connection and may cause
TCP flows to timeout leading to inefficiency and unfairness
[13].
The main components of the origin ITM are:
Monitor: The monitor component tracks the bandwidth
grabbed by the elastic TCP-based tunnel established be-
tween the origin ITM and the destination ITM. The monitor
measures the bandwidth over a measurement period (MP).
Controller: The controller based on the error signal be-
tween the measured bandwidth grabbed by them ITM-TCP
flows and the desired bandwidth targetB�, adjusts the num-
ber of open ITM-TCP connections. The controller is in-
voked every control period (CP), which we take to be equal
to MP. We discuss the performance of different types of con-
trollers in Section 3.
Scheduler: The scheduler component is responsible for al-
locating the bandwidth acquired by the elastic TCP-based
tunnel among the n user-TCP flows. Many scheduling poli-
cies can be used, e.g. WFQ [14]. The scheduler is called on
every user packet arrival.
The ITM architecture has been implemented by an event-
driven API [5]. The base of the system is an ITM kernel
module, which communicates with the TCP/IP stack to re-
trieve packets. Preliminary implementation results could be
found in [9].

3. Control-theoretic Analysis

In this section, we develop a control-theoretic model
of different controllers employed at an origin ITM. Such
controller determines the degree of elasticity of ITM-to-
ITM TCP-based tunnels, thus it determines the transient and

steady-state behavior of our soft-bandwidth-guaranteed ser-
vice.
Näıve Control: This naı̈ve controller measures the band-
width b0 grabbed by the current m0 ITM-TCP connections.
Then, it directly computes the quiescent number m̂ of ITM-
TCP connections that should be open as:

m̂ =
B�

b0
m0 (1)

Clearly, this controller naı̈vely relies on the previously mea-
sured bandwidth b0 and adapts without regard to delays in
measurements and possible changes in network conditions,
e.g. changes in the amount of cross traffic. We thus in-
vestigate general well-known controllers which judiciously
zoom-in toward the target bandwidth value. To that end, we
develop a flow-level model of the system dynamics. The
change in the bandwidth grabbed b(t) by the m(t) ITM-
TCP flows (constituting the elastic ITM-to-ITM tunnel) can
be described as:

_b(t) = �[(C �B�)m(t)�B�x(t)] (2)

Thus, b(t) increases with m(t) and decreases as the number
of cross-connections x(t) increases. � is a constant that
represents the degree of multiplexing of flows and we chose
it to be the steady-state connection’s fair share ratio of the
bottleneck capacity. At steady-state, _b(t) equals zero, which
yields:

B� =
Cm̂

(x̂+ m̂)
(3)

where m̂ and x̂ represent the steady-state values for the
number of ITM-TCP and cross-traffic flows, respectively.
Based of the current bandwidth allocation b(t) and the tar-
get bandwidth B�, an error signal e(t) can be obtained as:

e(t) = B�
� b(t) (4)

P and PI Control: A controller would adjust m(t) based
on the value of e(t). For a simple Proportional controller
(P-type), such adjustment can be described by:

m(t) = Kpe(t) (5)

P-type controllers are known to result in a non-zero steady-
state error. To exactly achieve the target B� (i.e. with zero
steady-state error), a Proportional-Integral (PI-type) con-
troller can be used:

m(t) = Kpe(t) +Ki

Z
e(t) (6)

Figure 2 shows the block diagram of our elastic-tunnel
model. In the Laplace domain, denoting the controller
transfer function by C(s), the output b(s) is given by:

b(s) =
C(s)G1(s)

1 + C(s)G1(s)
B
�(s) +

G2(s)

1 + C(s)G1(s)
x(s) (7)



where G1(s) is given by:

G1(s) =
�

s
(8)

where � = �(C �B�). G2(s) is given by:

G2(s) =
��B�

s
(9)

For the P-controller, from Equation (5), C(s) is simply Kp.
For the PI-controller, from Equation (6), C(s) equals Kp +
Ki

s
. Thus, the transfer function b(s)

B�
in the presence of a

P-controller is given by:

b(s)

B�
=

Kp�

s+Kp�
(10)

The system with P-controller is always stable since the root
of the characteristic equation (i.e. the denominator of the
transfer function) is negative, given by �Kp�. In the pres-

ence of a PI-controller, the transfer function b(s)
B�

is given
by:

b(s)

B�
=

Kp�s+Ki�

s2 +Kp�s+Ki�
(11)

One can choose the PI-controller parameters Kp and Ki to
achieve a certain convergence behavior to the target band-
width B�. In [9], we define the transient performance mea-
sures of interest and assess the system’s stability when feed-
back delay is present.

- C(s) G1(s) +

G2(s)

B*(s) e(s) m(s)

x(s)

b(s)

Controller

Figure 2. Block Diagram of Our Elastic-Tunnel
Model

3.1. Transient Performance Results

Figure 3 shows the step response of the transfer function
given in Equation (7). The left column shows the response
to a step change in the target bandwidth, while the right
column shows the response to a step change in the cross-
traffic. Figure 3(a), for the P-controller, shows that while
the response could be acceptable due to a step change in
the reference bandwidth, it suffers from steady-state error
(non-zero amplitude) due to a step change in the cross-
traffic. Figures 3(b) and (c) show the response due to the
PI-controller. One can see that through a careful choice of
Kp and Ki, the transient response can be adjusted. Notice

that with a PI-controller, our elastic-tunneling system can
reach the target bandwidth with zero steady-state error in
response to a step change in cross-traffic. Henceforth, we
only focus on showing results for the PI controller. All the
results of our analysis have been verified by simulations
and presented in [9].
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(a) Proportional controller withKp = 0.1
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(b) Proportional Integral controller withKp = 0.2 andKi = 1
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Figure 3. Transient Analysis of our Elastic-
Tunnel Model

4. Simulation Results
In this section, we present results from extensive ns-2 [6]

simulation experiments. These results confirm our analysis
and demonstrate the effectiveness of our proposed architec-
ture in establishing elastic soft-bandwidth-guaranteed tun-
nels.

4.1. Simulation Experiments

Topology Setup: Figure 1 depicts the topology under
consideration. The bottleneck link has 16Mb/s (2000 pkts

sec
)



capacity and a 2-ms one-way propagation delay. We vary
the propagation delay on the access links so different flows
have different round-trip times. The bottleneck link is
shared between ITM-TCP connections and cross-traffic
connections and employs RED queue management [8].3

All connections are considered to have unlimited data to
send and they all use TCP Reno. The buffer size is chosen
to be 250 packets. All packets are 1000 bytes in size.
RED’s minimum and maximum buffer thresholds are set
to 50 and 120 packets, respectively. The RED’s weight
parameter was set to 0.0001 and Pmax was set to 0.1. We
focus on the transient behavior of different controllers.
We ignore the first 20 seconds of the simulation time as a
warm-up period. The Measurement Period (MP) as well as
the Control Period (CP) are chosen to be 2 seconds.
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Figure 4. (Top row) Effect of dynamic cross-
traffic on the Naı̈ve Controller; (Bottom row)
Effect of dynamic cross-traffic on the PI Con-
troller

Experiment 1: The purpose of this experiment is to
demonstrate the drawbacks of the naı̈ve controller through
a more dynamic behavior of cross-traffic connections.
Specifically, cross-traffic connections start and stop sending
data every 10 seconds starting at time 50. This has the
effect of a square signal in the data sent by the cross-traffic.

3We note that our elastic-tunnel service does not require any spe-
cific queue management policy. Specifically, core routers may use sim-
ple FCFS (First-Come-First-Serve) queues. In practice, randomization
comes from unsynchronized arrivals/departures of flows/packets and FCFS
queues would serve TCP flows in a processor-sharing fashion, giving each
flow its fair share of the resources.

Figure 4(a) shows the behavior of the elastic tunnel under
these square signals in the cross-traffic. Figure 4(b) shows
the number of open ITM-TCP connections at any instant of
time. As illustrated, the naı̈ve controller fails to stabilize
the number of open ITM-TCP connections which is one of
our main design goals. Rather the naı̈ve controller tends to
open and close a large number of ITM-TCP connections
at every control period. Figures 4(c) and (d) show the
behavior of the PI-controller. One can see that it opens less
ITM-TCP flows than the naı̈ve controller. The maximum
number of open ITM-TCP connections at any time was 20
as opposed to 40 connections for the naı̈ve controller. Also,
the bandwidth acquired by the elastic ITM-to-ITM tunnel
tends to oscillate less than in the naı̈ve controller case.
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Figure 5. Results for different controllers in a
more dynamic environment

Another Setup: For the following two experiments we
change the bottleneck link capacity to 50 Mb/s (6250 pkts

sec
).

The round-trip propagation delay was chosen to be 100
msec. The Measurement Period (MP) as well as the Control
Period (CP) are chosen to be 1 second. The results show
that the effectiveness of our elastic-tunnel approach is in-
sensitive to different bandwidth/delay values.
Experiment 2: In this experiment, we start with a target
bandwidth of 1875 pkts

sec
. At time 30, the target bandwidth

decreases to 1250 pks

sec
. At time 60, it is further decreased

to 625 pks

sec
. The cross-traffic is static. Figure 5(a) shows

the bandwidth acquired by our elastic tunnel with a PI-
controller, which is seen to adapt very well. We repeat
the experiment, this time changing over time the number



of cross-traffic flows. In particular, we start with 10 cross-
traffic flows; at time 30, the number of cross-traffic flows
is increased to 30; and finally at time 60, it is increased to
50. The target bandwidth is static. Figure 5(b) shows how
the PI-controller stabilizes the system as expected from the
analysis of Section 3.
Experiment 3: Here, we move to a more dynamic environ-
ment. In this experiment, we compare the naı̈ve controller,
the PI and the case where no control is applied. In this sce-
nario we change the cross-traffic over time as shown in Fig-
ure 5(c). Under no control (i.e. no ITM functionality is ex-
ercised), as one would expect, the aggregate bandwidth ob-
tained by user-TCP flows is very sensitive to changes in the
cross-traffic (Figure 5(d)). The naı̈ve controller, despite the
high overshoots, finally stabilizes the system. Figure 5(c)
shows the oscillating behavior of the naı̈ve controller. It is
undesirable to erratically open and close ITM-TCP connec-
tions and therefore this controller is not an optimal choice
for highly dynamic environments. On the contrary, the PI-
controller stabilizes the achieved bandwidth around the de-
sired target in a less aggressive manner.

5. Related Work

In addition to QoS frameworks [3, 2] outlined in Sec-
tion 1, other works have focused on developing end-system
protocols that try to adapt the resources provided by the
network to the needs of the application. For example,
some studies (e.g., [11]) proposed different control rules
for TCP behavior. By applying the right control rule, other
properties can be achieved such as smoothness, aggressive-
ness and convergence, while maintaining friendliness to co-
existing TCP traffic. This is particularly useful for stream-
ing, real-time and gaming applications. Other studies (e.g.,
[12, 1, 15]) proposed that modification in transmission con-
trol rules be done on aggregates rather than individual flows,
with the notion of flows sharing congestion information.
For example, in [12], congestion information from a sepa-
rate management connection (or using an architecture such
as the Congestion Manager [1]) is used to regulate the ag-
gregate traffic. Other techniques, such as Aggregate TCP
(ATCP) [15] provides a congestion window lookup for an
appropriate window size for new connections to start with.
OverQoS [17] provides a controlled-loss virtual channel be-
tween overlay nodes. However, none of these techniques
considered providing flows with a guaranteed bandwidth
service, but rather making flows adapt to available resources
more adequately.

6. Summary

We presented a framework for providing soft bandwidth-
guarantees over a best-effort network. Such a guarantee is
provided through the use of an elastic TCP-based tunnel
running between ITMs. The target bandwidth could be dy-

namically adjusted to meet the needs of applications. The
elasticity of the established tunnel is achieved by adjusting
the number of open TCP connections between ITMs to a
quiescent number, large enough to push back against cross-
traffic. This is performed in a completely transparent way
from the sending and receiving end-hosts. Moreover, our
framework allows for the QoS support of individual appli-
cations by preferentially allocating the bandwidth provided
by the established elastic tunnel. We presented simulation
results showing the effectiveness of our approach in allocat-
ing the target bandwidth. Moreover, our approach remains
responsive to congestion and degrades gracefully in severe
congestion cases.
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