
An Internet-wide Distributed System for Data-stream Processing

Gabriel Parmer, Richard West, Xin Qi, Gerald Fry, and Yuting Zhang

Computer Science Department
Boston University
Boston, MA 02215

{gabep1, richwest, xqi, gfry, danazh}@cs.bu.edu

Abstract

The ubiquity of the Internet has stimulated the develop-
ment of data- rather than processor-intensive applications.
Such data-intensive applications include streaming media,
interactive distance learning, and live web-casts. While
plenty of research has focused on the real-time delivery
of media streams to various subscribers, no solutions have
been proposed that provide per-subscriber QoS guarantees
to hundreds of thousands of subscribers distributed on an
Internet scale. Moreover, there has been no successful ap-
proach that integrates heterogeneous end-hosts into a dis-
tributed system, connected via an overlay network, for the
purpose of QoS-constrained data processing and delivery.

This paper proposes a pipelined distributed system that
is the foundation for the delivery of QoS constrained data-
streams over a scalable backbone consisting of heteroge-
neous commodity-off-the-shelf (COTS) systems. To provide
a scalable routing substrate that can adapt to QoS demands
and constraints, a peer-to-peer (P2P) overlay topology is
constructed consisting of the end-hosts of the system. Fur-
ther, end-hosts leverage a technique called user-level sand-
boxing, that enables application-specific stream processing
agents (SPAs) to be deployed on various hosts in the sys-
tem. These SPAs can be used to process and route data
according to application-level service requirements without
the need for explicit scheduling or data-copying overheads.
Collectively, these research endeavors provide the mecha-
nisms by which a distributed data-stream processing system
on the scale of the Internet can be realized.

1. Introduction

The growth of the Internet has stimulated the develop-
ment of applications that are largely data rather than CPU
intensive. Examples include streaming media delivery, in-
teractive distance learning, web-casting, group simulations,
live auctions, and stock brokerage applications. Addition-
ally, peer-to-peer (P2P) systems such as Gnutella [10, 15],

Freenet [7], Kazaa [12] and more recent variations (e.g.,
Chord [19], CAN [14], Pastry [16] and Tapestry [23]) have
become popular due to their ability to efficiently locate and
retrieve data of particular interest.

While the Internet continues to grow, there is an enor-
mous untapped potential to use distributed computing re-
sources for large scale applications. Some projects such as
SETI@home [17] have already realized this potential, by
utilizing spare compute cycles on off-the-shelf computers
to process application-specific data. Similarly, grid comput-
ing technologies (e.g., Globus [9, 5]) are attempting to co-
ordinate and share computing resources on the scale of the
Internet, to support emerging applications in areas such as
scientific computing. However, there has been only limited
research on the construction of scalable distributed systems
to support the delivery and processing of high bandwidth,
and potentially real-time, data streams transported over
the Internet [4]. An Internet-wide distributed system for
data stream processing would be desirable for applications
such as interactive distance learning, tele-medicine, and live
video broadcasts, bringing together potentially many thou-
sands of people located in different regions of the world.
Further, such a system would pave the way for new applica-
tions, such as a distributed and adaptive traffic management
system, and, generally, any application that requires the dis-
semination of sensor data.

Essentially, applications are emerging that have require-
ments that extend beyond what a classical client/server
paradigm can provide. In this model, a client issues a re-
mote procedure call (RPC) to a server, sending the request
and receiving the reply via IP. Some applications exist that
would be better served by a pipelined, publisher/subscriber
model. These models of end-host communication can be
seen in Figure 1. The delivery of QoS constrained media
streams to an extremely large population of interested end-
hosts is a task ideally suited for the publisher/subscriber
model.

This paper presents such a system based on pipelined

Server Client Publisher Intermediate Subscriber

Figure 1. Client-server and pub-
lisher/subscriber models.

processing of data streams. Generally, this system can be
utilized by any application domain that requires the scal-
able, QoS and resource aware delivery and processing of
data-streams. Essentially, data streams can be transferred
over a overlay topology of end-hosts on the Internet and
at each hop processing can be performed on the stream by
Stream Processing Agents (SPAs). These SPAs can take
the form of a QoS and resource aware router, a filter to ex-
tract from a stream relevant information, an entity to per-
form transformations on the data, an agent to build multi-
cast trees, a splitting agent that could separate the stream
over two links to distribute bandwidth usage, or an agent to
merge these streams.

For example, a number of sensors, perhaps cameras,
could publish the raw video they capture onto the distributed
system. It would be routed through the overlay via a se-
quence of end-host intermediary nodes. At each of these
intermediaries, a number of SPAs can be applied to the data-
stream to, for instance, compress and filter the data so that
a mobile device can easily receive and display the sensor
output. A certain population will subscribe to these data-
streams. These subscribers are the destination end-hosts
and will display the video. They will also act as interme-
diaries, possibly further routing streams to which they are
currently subscribed to other interested end-hosts, or per-
haps applying SPAs to other data-streams. The distributed
system is responsible for providing certain QoS levels to
each of the subscribers and each stream will be processed
and routed according to these constraints. This example
system can be seen in Figure 2.

Video sensors
(publishers)

Static
Subscribers

Overlay
network

Mobile
Subscriber

Wireless
Access
point

Intermediate
nodes

Figure 2. An example distributed system for
sensor-produced data-stream dissemination.

One of the fundamental aspects of this work is to lever-
age off-the-shelf computers on the Internet to build a scal-

able distributed system for the routing and processing of
data streams. Of particular interest is the use of overlay
networks to deliver real-time media streams from one or
more publishing nodes to potentially many thousands of
subscribers, each with their own quality-of-service (QoS)
requirements. While many existing P2P systems form over-
lay networks on top of the underlying physical network,
they do not yet support the timely delivery of data streams
between publishers and subscribers. For example, Pastry,
Chord, and CAN all build logical topologies for the pur-
pose of forwarding messages to locate an object in a de-
centralized system, rather than transporting data streams.
Moreover, these systems make no attempt to route data in
accordance with latency and bandwidth requirements.

There are systems such as Narada [4] that attempt to
use end-hosts for multicast routing of data with QoS con-
straints. While end-system multicasting incurs delay penal-
ties relative to IP-layer multicasting, it does have some ad-
vantages. First, IP-layer multicasting is not widely used.
Second, using end-hosts for routing enables paths to be con-
structed and adapted based on application-specific require-
ments. Third, routing decisions can be made dependent
on resource usage distributions throughout the system. Fi-
nally, end-hosts can incorporate additional functionality to
perform application-specific data processing before data is
forwarded to the next hop.

Narada advocates end-system multicast routing, but can-
not scale to many hosts. A system is desirable that has the
scalability of a P2P system, but that can provide the versatil-
ity of Narada’s routing scheme. Several studies have been
carried out in building toward this system. Section 2 de-
scribes preliminary studies relating to the construction of
scalable overlay topologies which will provide the back-
bone over which to route and process data. This is fol-
lowed by Section 3, that describes work in the area of end-
system design and extensibility. In the latter case, each end-
host in the distributed system will be equipped with service
policies and mechanisms to ensure application-specific data
processing agents will execute in a safe, predictable and ef-
ficient manner. We argue that an extensible software ar-
chitecture is needed on at least a subset of all end-hosts in
the distributed system to support application-specific SPAs
and customizable resource monitoring functions in a man-
ner that can guarantee the QoS. This will enable applica-
tions to deploy stream processing agents and/or monitoring
extensions on remote hosts, thereby influencing the behav-
ior of the system for their specific needs.

2 Scalable Overlay Topologies for QoS-
Constrained Routing

Research in the area of P2P systems has led to the use
of distributed hashing techniques for scalable overlay rout-

B

A

C

D

F

E

G

H
16

18

21

19
1210

16
7

18
14

10

8

E

C

A

G

F

D

B

H

R1 R25

2

4

8

10

1

9

6

3

(a) (b)

[000] [100]

[111]

[101]

[010]

[011]

Node F ID = 001, Node D ID = 110

Figure 3. A sample overlay network

ing, but such approaches have not attempted to provide QoS
guarantees on data delivery. In effect, these systems build k-
ary n-cube logical overlays (or, more general n-dimensional
tori) on top of the physical network.

We use undirected k-ary n-cube graphs to model logical
overlays in a similar manner to these P2P systems. These
graphs are specified using n as the dimensionality parame-
ter and k as the radix (or base) in each dimension. Figure 3
shows an example of an overlay network structured as a 2-
ary 3-cube graph and a corresponding underlying physical
network. A cost is associated with each edge in the physical
network, and each edge in the logical overlay maps to the
shortest path between the respective end-point nodes in the
physical topology. The costs associated with logical edges
are derived as the sum of the costs along the corresponding
path taken in the physical network. Note that the physical
topology may contain end-hosts that do not participate ex-
plicitly within the context of the overlay network (i.e., R1
and R2).

2.1 Properties of k-ary n-cube Topologies

K-ary n-cubes have many important characteristics
which can be leveraged for QoS-constrained routing [8]:
• A k-ary n-cube is an n dimensional graph with k ver-

tices (or nodes) in each dimension. One can think of k

as the radix or base of a given dimension.
• M = kn, where M is the number of nodes in the

graph. Therefore, n = logk M .
• Each node is of the same degree, with n neighbors if

k = 2, or 2n neighbors if k > 2.
• The distance between any pair of nodes in the graph

is no more than W (k, n) = nb k

2
c hops. This assumes

there are no cycles in the path between a pair of nodes.
• The average routing path length between nodes in the

graph is A(k, n) = nb k
2

4
c 1

k
hops.

• The optimal dimensionality of the graph is n = ln M ,
to minimize the average and worst-case path lengths
between a pair of nodes. However, since n must be
an integer, the actual dimensionality of a k-ary n-cube
should approximate to this value.

• Each node in the graph can be associated with a logi-
cal identifier consisting of n digits, where the ith digit
(given 1≤i≤n) is a base-k integer representing the off-
set in dimension i.

• Two nodes are connected by an edge iff their identifiers
have n − 1 identical digits, except for the ith digit in
both identifiers, which differ by exactly 1 modulo k.

The regularity of k-ary n-cube graphs provides for a log-
ical topology that is scalable in the sense that routing com-
plexity increases less than linearly with the number of log-
ical nodes in the system. Intuitively, the structure is reg-
ular and compact, with different values of k and n result-
ing in differing topology sizes and corresponding values of
A(k, n).

Hypercubes (k-ary n-cubes where k = 2) are common
in NUMA architectures and much research has been done
concerning these structures in that context. Building a dis-
tributed and optimal k-ary n-cube is a much more complex
problem than those addressed in the past. The scale of the
endeavor is orders larger and the environment in which it
will be deployed is of a dynamic nature. Because nodes
can join and depart from the system at any time, the opti-
mal values for k and n must change, and the system must
adapt. The problem of choosing values for k and n reduces
to imposing a linear ordering on (k, n) pairs such that cor-
responding values of A(k, n) are monotonically increasing.
Further details can be found in a corresponding technical
report [8]. For each (k, n) pair we define an M-region,
or range of values for the number of physical hosts, for
which the associated k-ary n-cube is optimal with respect to
A(k, n). We are not aware of any P2P systems that dynam-
ically adapt their overlay topology to minimize the average
hop distance between nodes, as in our approach.

2.2 Proximity-based Greedy Routing

While our overlay topology is bootstrapped for a par-
ticular k-ary n-cube, it can be changed dynamically as the
number of physical hosts change. However, this merely af-
fects the average and worst-case hop counts to route data
between a pair of end-hosts. For QoS-constrained routing,
we need to know the physical link costs of communication
between pairs of end-hosts. In preliminary studies we tested
three alternative approaches to routing over k-ary n-cubes:

• Ordered Dimensional Routing: The data-stream is al-
ways forwarded to a specified connected node deter-
mined by what hop we are on.

• Random Ordering of Dimensions: This is similar to
the previous scheme except data streams are forwarded
along randomly selected dimensions, but always to-
ward the destination.

• Greedy Routing: Greedy routing is performed using
some measure of physical proximity. Data-streams are

always forwarded along logical edges with the lowest
cost, and, again, always toward the destination.

For more detailed information regarding these routing poli-
cies, see [8].

Experiments were conducted using generated random
transit-stub physical topologies [22] with 65536 hosts.
They demonstrate the behavior of our P2P system with a
significantly sized population. One host was chosen at ran-
dom to be a publisher, and all other hosts were assumed to
be subscribers. A message was then routed from the pub-
lisher host to each subscriber host and end-to-end latencies
were recorded, as well as the unicast latency of a message
routed directly between the publisher and each subscriber.
The delay penalty of routing over the overlay relative to the
unicast delay was calculated as the logical end-to-end la-
tency divided by the unicast delay for each subscriber host.
Figure 4 shows the delay penalties for each of the three rout-
ing algorithms on a 2-ary 16-cube, and on a 16-ary 4-cube.
We can see that, as expected, different configurations for
k and n yield different efficiencies for certain population
sizes [8]. Moreover, we can see that greedy routing can pro-
vide better efficiency given a dynamic network with varying
link states. Greedy routing allows our distributed system
to adapt to network characteristics and route with per-data-
stream QoS constraints in mind.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

o
f

S
u

b
sc

ri
b

er
s

Delay Penalty (relative to unicast)

16D Hypercube vs. 16-ary 4-cube

2x16 ODR
2x16 Random

2x16 Greedy
16x4 ODR

16x4 Random
16x4 Greedy

Figure 4. Comparison of routing algorithms.

While the relative delay penalty is significant, with re-
spect to unicast costs, end-system multicast routing seems
plausible for large-scale applications. We still need to in-
vestigate relative delay penalties compared to network-layer
IP multicast, but Narada provides convincing evidence that
host-based routing is a viable approach.

Subscribe(Subscriber S, Publisher P) {
Find the neighbor i of P such that:

(i.cost(P) < S.constraint) or
(i.cost(P) is minimum for all neighbors);

If host i is not a subscriber then
swap logical positions of i and S;

If host i is a subscriber then
Subscribe(S, i); }

Figure 5. Adaptive node re-assignment al-
gorithm

2.3 Adaptive Node ID Assignment

Bootstrapping an overlay topology and randomly assign-
ing node IDs can result in poor proximity between neigh-
boring nodes. In the absence of information about how
publisher and subscriber hosts are associated with QoS-
constrained data streams, random placement of physical
hosts in the logical network is appropriate. However, as
sets of hosts begin to specify interest in receiving particular
data streams with corresponding service constraints, it be-
comes possible to re-assign such subscriber hosts to more
appropriate locations in logical space. Re-assignment of a
host to a new location in the overlay (based on the requested
service) is accomplished by swapping the logical node iden-
tifier, as well as routing table information, with some other
host in the system. In typical P2P systems, there is no cor-
relation between logical ID and physical locality. The adap-
tive re-assignment of node ID establishes this correlation in
hopes that QoS guarantees can be strengthened by decreas-
ing communication latency. The algorithm for changing po-
sitions in the logical overlay is described in Figure 5.

Experiments have been conducted that show using adap-
tive node re-assignment can give significant benefit. See our
previous paper [8] for details.

3 End-System Design and Extensibility

The importance of being able to provide QoS guaran-
tees for data-streams at the end-host granularity cannot be
overstated. Because of this, we intend to configure end-
hosts with support for “user-level sandboxing” [21]. A
sandbox will provide a safe, efficient, and predictable en-
vironment for the implementation of overlays, stream pro-
cessing agents, and application-specific services, including
those that monitor and react to observed resource usage and
availability. Using this approach, data stream processing
can take place on an end-user’s machine without consum-
ing all computing resources. Constraining the usage of re-
sources and making them have as little overhead as possible
is important because an end-user may wish to use his/her
computer for more than just data stream processing; there
may be other applications co-existing on a single end-host.

Using our sandboxing mechanism, we allow applications
to configure and deploy SPAs at user-level that may execute

in the context of any address space. Using Linux as the basis
for our approach, we focus specifically on the implemen-
tation of a user-space network protocol stack, that avoids
copying data via the kernel when communicating with the
network interface. Our approach enables services to effi-
ciently process and forward data using configurable SPAs
via proxies, or intermediate hosts, in the communication
path of high performance data streams. Unlike other user-
level networking implementations, our method makes no
special hardware requirements and can be widely deployed
on COTS systems. Due to benefits gained from user-level
sandboxing we achieve a substantial increase in through-
put over comparable user-space methods. Additionally, the
elimination of scheduling overheads greatly reduces the de-
lay variation between service invocations, which is criti-
cal to jitter-sensitive data-streams such as real-time media
streams.

. . . Process-private
address space

Sandbox region
(shared virtual address space)

Kernel Level

User Level

P1 P2 Pn

Extension for P2

Kernel events make
sandbox region

user-level accessible

e.g., user-level network stack

Figure 6. User-level sandboxing with an ex-
tension mapped into the shared virtual mem-
ory region.

Traditional operating systems provide logical protection
domains for processes mapped into separate address spaces.
With user-level sandboxing (Figure 6), each process address
space is divided into two parts: a conventional process-
private memory region and a shared, but normally inacces-
sible, virtual memory region. The shared region acts as
a sandbox for mapped extensions. When extensions are
executed via upcalls from the kernel, the shared virtual-
memory region is made accessible at user-level. Kernel
events, delivered by upcalls to sandbox code, are handled
in the context of the current process, thereby eliminating
scheduling costs.

Because extensions running in the sandbox execute at
user-level, they can use application libraries, and typical
application programming practices1. Also, in contrast to
kernel-level extensibility mechanisms, they cannot issue
privileged instructions, and therefore they cannot directly
modify or influence the networking hardware to copy pack-

1With a few restrictions such as not being able to use mmap[21]

User−Level

Sandbox

Stream Processing Agent

User−level Network Protocol Stack

Network Driver

Network Interface Card

DMA DMA

ReturnUpcall

Kernel

Figure 7. Packets are transferred by DMA be-
tween the NIC and the sandbox. The network
driver upcalls into the sandbox protocol stack
and SPAs compute on the packets.

ets directly to and from the sandbox using DMA. This pro-
tects the system, but the ability to utilize DMA to zero-
copy is extremely important to minimize the overhead of
stream processing on the end-hosts. Typical implementa-
tions of zero-copy, require specialized hardware [20]. In-
stead our scheme allows the host kernel and sandbox to in-
terface through a well defined set of communication chan-
nels to pass the desired memory location for packet arrival
or transmission. In this way, the kernel address space is
isolated from sandbox extensions. Independent of which
process is running at any given moment, the networking
card can DMA directly to or from the sandbox region. Fig-
ure 7 demonstrates the structure and execution of the sand-
box networking stack and the SPA execution as well as the
DMA interaction with the network interface card. A thor-
ough explanation can be found in [13].

Kernel
Level

Control / Data
Channels

•Overlay management
•Resource monitoring

Sandbox Region

App process
User
LevelApp process

SPAs
(e.g., routing agents)

Publisher Intermediate Subscriber

•Overlay management
•Resource monitoring

Figure 8. A publisher/subscriber model using
user-level sandboxing.

Sandboxed Networking Efficiency: We use a simple UDP
forwarding agent to test the performance characteristics of
our implementation. This application forwards UDP pack-
ets for specific streams of data from one host, the publisher,
through the intermediary forwarding host, to the subscriber.
A generic demonstration of a publisher/subscriber model
can be seen in Figure 8. Such a generic application would

be used to route data along the P2P overlay described in
Section 2. The forwarding would typically be directed and
arbitrated by routing protocols, such as the greedy routing
algorithm explained in 2.2.

0

100

200

300

400

500

600

700

0 1 2 4 8 16 24

Number of Background Threads

T
hr

ou
gh

pu
t (

M
bp

s)

Socket Kernel Sandbox

Figure 9. UDP Throughput comparison of an
optimized sandbox stack versus both user-
level sockets and kernel implementations.

We show the efficiency of our sandboxed networking im-
plementation by demonstrating the raw bandwidth achiev-
able. Figure 9 shows a comparison between the through-
put routing capability of the fastest possible middleware
forwarder, an application that simply reads data from one
socket and writes to another, a kernel forwarder that uses
a kernel-thread to forward data from one socket to another,
and a forwarding agent using the sandbox networking stack.
The main differences between the implementations is that
the sandboxed networking stack does all forwarding at in-
terrupt time because SPAs can be executed in the context
of any running process, while the other implementations do
network processing in the context of a thread, so they suf-
fer from scheduling delays. Both the kernel and sandbox
networking case use DMA to execute zero-copy commu-
nication while the middleware case cannot. Background
processes are run to measure the effect of system load on
performance. These background processes are simple CPU-
bound tasks with minimal working-set sizes. It is important
to measure the throughput of our methods with background
processes because we target COTS systems on the Internet
that probably will be performing other tasks concurrently.

One can see that the sandboxed networking stack’s band-
width remains nearly constant as the number of processes
increases while the other approaches do not. Even with no
background processes, our user-level networking does bet-
ter than the minimal user-level application and only slightly
worse than the kernel itself. A thorough analysis of these
results can be found in [13].
Quality of Service Reliability: Because it is important to
provide QoS guarantees at every level in a system, from

overlay to end-hosts, we measure the amount of jitter in the
arrival time of the packets experienced by the node receiv-
ing the stream routed through the intermediary node. This
allows us insights into the granularity of QoS guarantees
we can make on an end-host level. Experiments conducted
to test the QoS characteristics of the forwarding SPA in the
sandbox as compared to the one in the kernel, and a middle-
ware program can be found in [21]. The jitter in the data-
stream sent from publisher to subscriber is measured, with
a certain amount of background threads. The jitter experi-
enced by the sandbox networking scheme is independent of
the number of threads currently running and is constant. Be-
cause the other two schemes suffer from scheduling delays,
they experience a significant increase in jitter as the number
of background threads grow. Isolation of the network com-
putation strengthens the QoS guarantees we can make in the
distributed system, because on each end-host along the rout-
ing path of a data stream, jitter can be tightly constrained.
Because a data-stream may be forwarded through multiple
end-hosts through the overlay, it is important that each of
these nodes avoids introducing unpredictable delays. Any
detriment incurred at the node level will be compounded as
the data-stream is forwarded through multiple hops.

4 Related Work

Many technologies have been proposed to construct scal-
able content management systems on the Internet. Among
these are existing P2P systems such as first [10, 15, 7, 12]
and second [19, 14, 16, 23] generation P2P networks that
build logical topologies for the purposes of locating an ob-
ject in a decentralized manner. While these systems route
control messages over these logical topologies, they do not
use them for the real-time delivery of application streams.

Systems such as Narada [4] attempt to use end-hosts for
multicast routing of data with QoS constraints. Though
similar to our system, Narada cannot scale to anything
beyond a few hundred hosts. In contrast, we wish to
scale to the size of the Internet. While a number of other
projects [1, 6, 3, 11, 2, 18] have implemented scalable mul-
ticast solutions at the application-level, most have either not
addressed per-subscriber QoS requirements, or take a very
different approach to ours. None have attempted to ensure
QoS guarantees on the end-host level.

5 Conclusions and Future Work

We propose a framework for the processing and delivery
of data-streams that is scalable to the size of the Internet and
that can address per-subscriber QoS constraints through-
out the entire system. Though this system is ideal for the
delivery and processing of multimedia streams, it is gen-
eral enough that it could be used as a distributed pipelined

super-computer. The need for such a system is derived
from the inability of the client/server model to provide a
resource-aware, QoS constrained data-stream delivery and
processing framework. A publisher/subscriber paradigm is
required for such a system, especially when the size of the
population becomes large.

To provide a scalable framework over which data-
streams can be processed in a manner consistent with their
QoS constraints, we propose a system consisting of a P2P
overlay and an end-system architecture, both engineered to
provide scalability and QoS throughout. The P2P system
is able to make decisions about optimal structure for differ-
ent population sizes, about intelligent routing based on QoS
and network characteristics, and about logical placement
of nodes to further strengthen QoS constraints. The end-
system sandboxing network architecture provides an effi-
cient and QoS aware system with which to execute SPAs on
data-streams. It does this while making no special hardware
requirements. Experiments have confirmed the scalability
and efficiency of both of these technologies.

The mechanisms for such a distributed system for data-
stream processing on the scale of the Internet have been in-
troduced in this paper. Many of the policies to build on
top of these mechanisms are currently being researched.
These include resource management and monitoring which
will allow intelligent application of specific SPAs through-
out the network, such as one to split a stream or to build
a multicast tree. Additionally, new SPAs for specific types
of data-streams need to be formulated. For instance, any
pipelined scientific application will require specific compu-
tational stages, each of which can be mapped into a SPA.
In short, this paper presents the framework for a distributed
data-stream processing system and many of the policies of
how to manage and use the system are ongoing work.

References

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. In Proceedings of ACM
Sigcomm, August 2002.

[2] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and
S. Khuller. Construction of an efficient overlay multicast
infrastructure for real-time applications. In Proceedings of
INFOCOM, San Francisco, CA, April 2003.

[3] Y. Chawathe. Scattercast: An Architecture for Internet
Broadcast Distribution as an Infrastructure Service. PhD
thesis, University of California, Berkeley, December 2000.

[4] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In ACM SIGMETRICS 2000, pages 1–12, Santa
Clara, CA, June 2000. ACM.

[5] I. Foster and C. Kesselman. The Globus Project: A sta-
tus report. In Proceedings of IPPS/SPDP’98 Heterogeneous
Computing Workshop, pages 4–18, 1998.

[6] P. Francis. Yoid: Extending the multicast internet architec-
ture, 1999. On-line documentation:
http://www.aciri.org/yoid/.

[7] Freenet: http://freenet.sourceforge.net/.
[8] G. Fry and R. West. Adaptive routing of QoS-constrained

media streams over scalable overlay topologies. In Proceed-
ings of the 10th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2004.

[9] The Globus Alliance: http://www.globus.org/.
[10] Gnutella: http://www.gnutella.com.
[11] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and

J. O’Toole. Overcast: Reliable multicasting with an overlay
network. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation, October 2000.

[12] Kazaa: http://www.kazaa.com.
[13] X. Qi, G. Parmer, R. West, J. Gloudon, and L. Hernandez.

Efficient end-host architecture for high performance com-
munication using user-level sandboxing. Technical Report
2004-009, Boston University, 2004.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of the 2001 conference on applications, tech-
nologies, architectures, and protocols for computer commu-
nications, pages 161–172. ACM Press, 2001.

[15] M. Ripeanu. Peer-to-peer architecture case study: Gnutella
network. In Proceedings of the International Conference
on Peer-to-Peer Computing (P2P2001), Linkoping, Sweden,
August 2001.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Heidel-
berg, Germany, November 2001.

[17] SETI@home: http://setiathome.ssl.berkeley.edu/.
[18] S. Shi and J. Turner. Routing in overlay multicast networks.

In Proceedings of IEEE Infocom, June 2002.
[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the 2001 confer-
ence on applications, technologies, architectures, and pro-
tocols for computer communications, pages 149–160. ACM
Press, 2001.

[20] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net:
A user-level network interface for parallel and distributed
computing. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, pages 40–53. ACM, Decem-
ber 1995.

[21] R. West and J. Gloudon. User-Level Sandboxing: a safe
and efficient mechanism for extensibility. Technical Report
2003-14, Boston University, 2003. Now revised and submit-
ted for publication.

[22] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model
an internetwork. In Proceedings of IEEE Infocom, volume 2,
pages 594–602, San Francisco, CA, March 1996. IEEE.

[23] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, Computer Sci-
ence Division, U. C. Berkeley, Apr. 2001.

