Be a yardstick of quality. Some people aren't used to an environment where excellence is expected. - Steve Jobs

  • (Please note, this has not been recently updated and is still under construction. Please see Google Scholar for a more up-to-date list.)

  • Y. Wang, D. MacKernan, D. Cubero, and D.F. Coker, submitted to J. Chem. Phys. (2013)

    Single Electron States in Polyethylene

  • M. Masia, E. Rivera, D. Montemayor, D.A. Murray, and D.F. Coker, in preparation for submission to J. Chem. Phys. (2013)

    Intramolecular Contributions to the Spectral Density of Light Harvesting Complexes

  • P. Huo and D.F. Coker Springer Book Chapter (March, 2013)

    Excitation Energy Transfer in Biological Light Harvesting Systems

  • P. Huo, T.F. Miller III, and D.F. Coker, submitted to J. Chem. Phys. 139, 151103 (2013)

    Communication: Predictive Partial Linearized Path Integral Simulation of Condensed Phase Electron Transfer Dynamics

  • E. Rivera, D. Montemayor, M. Masia, and D.F. Coker J.Phys.Chem. 117, 55105521 (2013)

    Influence of Site Dependent Pigment-Protein Interactions on Excitation Energy Transfer in Photosynthetic Light Harvesting

  • P. Huo and D.F. Coker J. Chem. Phys. 137, 22A535 (2012)

  • M. Bellucci and D.F. Coker J. Chem. Phys. 136, 194505 (2012)

    Molecular Dynamics of Excited State Intramolecular Proton Transfer: 3-hydroxyflavone in Solution

  • 73. P. Huo and D.F. Coker Mol. Phys. 110, 1035 (2012)

    Semi-Classical Path Integral Nonadiabatic Dynamics: A Partial Linearized Classical Mapping Hamiltonian Approach

  • 72. P. Huo and D.F. Coker J. Chem. Phys. 136, 115102 (2012)

    Influence of Environment Induced Correlation Fluctuations in Electronic Coupling on Coherent Excitation Energy Transfer Dynamics in Model Photosynthetic Systems

  • 71. J. Moix, J. Wu, P. Huo, D.F. Coker, and J. Cao J. Phys. Chem. Letts. 2, 3045 (2011)

  • 70. C.J. Margulis, H.V.R. Annapureddy, P. de Base, D.F. Coker, J. Kohanoff, M. del Popolo JACS 133, 20186 (2011)

    Excess Electrons in Room-Temperature Ionic Liquids

  • 69. P. Huo and D.F. Coker J. Chem. Phys. 135, 20101 (2011)

    Partial Linearized Density Matrix Dynamics for Dissipative, Non-adiabatic Quantum Evolution

  • 68. M.A. Bellucci and D.F. Coker J. Chem. Phys. 135, 044115 (2011)

    Empirical Valence Bond Models for Reactive Potential Energy Surfaces: A Parallel Multilevel Genetic Program Approach

  • 67. P. Huo and D.F. Coker J. Phys. Chem. Letts. 2, 825 (2011)

    Theoretical Study of Coherent Excitation Energy Transfer in Cryptophyte Phycocyanin 645 at Physiological Temperature

  • 66. P. Huo and D.F. Coker J. Chem. Phys. 133, 184108 (2010)

    Iterative Linearized Density Matrix Propagation for Modeling Coherent Excitation Energy Transfer in Photosynthetic Light Harvesting Systems

  • 65. P. Huo, S. Bonella, L. Chen, and D.F. Coker Chem. Phys. 370, 87 (2010)

    Linearized Approximations for Condensed Phase Non-Adiabatic Dynamics: Multi-layered Baths and Browninan Dynamics Implementation

  • 64. J. Peng, T.C. Castonguay, D.F. Coker, and L.D. Ziegler J. Chem. Phys 131, 054501 (2009)

    Ultrafast H2 and D2 Rotational Raman Responses in Near Critical CO2: An Experimental and Theoretical Study of Anistropic Solvation Dynamics

  • 63. S. Bonella, D.F. Coker, D. MacKernan, R. Kapral, and G. Ciccotti in 'Energy Transfer Dynamics in Biomaterial Systems', Eds. I. Burghardt, V. May, D.A. Micha, and E.R. Bittner, Springer Series in Chemical Physics, Vol. 93, Springer Verlag, Heidelberg/Berlin (2009), ISBN 978-3-642-02307-1 (Print) 978-3-642-02306-4 (Online)

    Trajectory Based Simulations of Quantum-Classical Systems

  • 62. D.F. Coker, L. Chen, P. Huo, and S. Bonella in 'Multidmensional Quantum Mechanics with Trajectories', ed. by D.V. Shalashilin and M.P. de Miranda, p. 22-30 (CCP6, Daresbury Laboratory, 2008) ISBN: 978-0-9545289-8-0

    Exploring the Linearized Approximation for Condensed Phase Non-adiabatic Dynamics: Multi-layered Baths

  • 61.E. Dunkel, S. Bonella, and D.F. Coker, J. Chem. Phys. 129, 114106 (2008)

    Iterative Linearized Approach to Non-adiabatic Dynamics

  • 60. Z. Ma and D.F. Coker J. Chem. Phys. 128, 244108 (2008)

    Quantum Initial Condition Sampling for Linearized Density Matrix Dynamics: Vibrational Pure Dephasing of Iodine in Krypton Matrices

  • 59. D.F. Coker and S. Bonella in 'Computer Simulations in Condensed Matter: From Materials to Chemical Biology', Volume 1, Editors:M. Ferrario, G. Ciccotti, and K. Binder. Lecture Notes in Physics 703, 553 (Springer, Berlin, 2006)

    Linearized Path Integral Methods for Quantum Time Correlation functions

  • 58. D. F. Coker and S. Bonella in 'Quantum Dynamicsof Complex Molecular Systems', Editors: David Micha and Irene Burghardt, Chemical Physics 83, 275-294, (Springer, Berlin, 2006)

    Linearized Non-adiabatic Dynamics in the Adiabatic Representation

  • 57. G. Ciccott, D.F. Coker, and R. Krapral in 'Quantum Dynamics of Complex Molecular Systems' Editors: David Micha and Irene Burghardt, Chemical Physics 83, 275-294, (Springer, Berlin, 2006)

    Quantum Statistical Dynamics with Trajectories

  • 56. Z. Li, R. Sansom, S. Bonella, D.F. Coker, and A.S. Mullin J. Phys. Chem A. 109, 7657 (2005)

    Trajectory Study of Supercollison Relaxation in Highly Vibrational Excited Pyrazine and CO2

  • 55. S. Bonella and D.F. Coker J. Chem. Phys. 122, 194102 (2005)

    Land-map, Linearized Approach to Non-adiabatic Dynamics Using the Mapping Formalism

  • 54. S. Bonella, D. Montemayor, and D.F. Coker Proc. Natl. Acad. Sci. 102, 6715 (2005)

    Linearized Path Integral Mapping Hamiltonian Approach for Calculating Nonadiabatic Time Correlation Functions

  • 53. S. Bonella and D.F. Coker Comp. Phys. Commun. 169, 267 (2005)

    Lienarized, Time-dependent, Non-adiabatic Quantum Correlation Functions

  • 52. S. Causo, G. Ciccotti, S. Bonella, D. Montemayor, and D.F. Coker J. Phys. Chem. B. 109 6855 (2005)

    An Adiabatic Linearized Path Integral Approach for Quantum Time Correlation Functions: Electronic Transport in Metal-Molten Salt Solutions

  • 51. N. Yu and D.F. Coker Mol. Phys. 102, 1031 (2004)

    Ion Pair state Emission of I2 in Rare Gas Matrices: Effects of Solvent Induced Symmetry Breaking

  • 50. N. Yu, C.J. Margulis, and D.F. Coker J. Chem. Phys. 120, 3657 (2004)

    Ultrafast Non-adiabatic Dynamics: Quasiclassical Calculation of the Transient Photoelectron Spectrum of I2-(CO2)8 Clusters

  • 49. D. Cubero, N. Quirke, and D.F. Coker J. Chem. Phys. 119 2669 (2006)

    Electronic Transport in Disordered N-alkanes: From Fluid Methane to Amorphous Polyethylene

  • 48. D. Cubero, N. Quirke, and D.F. Coker Chem. Phys. Letts. 370, 21 (2003)

    Electronic States for Excess Electrons in Polyethylene Compared to Long Chain Alkanes

  • 47. S. Bonella and D.F. Coker J. Chem. Phys. 118, 4370 (2003)

    Semi-classical Implementation of the Mapping Hamiltonian Approach for Non-adiabatic Dynamics: Focused Initial Distribution Sampling

  • 46. N. Yu, C.J. Margulis, and D.F. Coker J. Phys. Chem. B. 105, 6728 (2001)

    Influence of Solvation Environment on Excited State Avoided Crossings and Photo-dissociation Dynamics

  • 45. C.J. Margulis, D.F. Coker, and R.M. Lynden-Bell Chem. Phys. Lett. 341, 557 (2001)

    Symmetry Breaking of the Triiodide Ion in Acetonitrile Solution

  • 44. S. Bonella and D.F. Coker J. Chem. Phys. 114, 7778 (2001)

    A Semi-classical Limit for the Mapping Hamiltonian Approach to Electronically Non-adiabatic Dynamics

  • 43. S. Bonella and D.F. Coker Chem. Phys. 268, 323 (2001)

    Semiclassical Implementation of Mapping Hamiltonian Methods for General Nonadabatic Problems

  • 42. J.A. MacKinnon, J. Eckert, D.F. Coker, and A.L.R. Bug J. Chem. Phys. 114, 10137 (2001)

    Computational Study of Molecular Hydrogen in Zeolite Na-N Part II: Density of Rotational States and Inelastic Neutron Scattering Spectra

  • 41. C.J. Margulis and D.F. Coker J. Chem. Phys. 114, 6744 (2001)

    Modeling Solvation of Excited Electronic States of Flexible Polyatomic Molecules: DIM for I3 in Argon Clusters

  • 40. C.J. Margulis, D.F. Coker, and R.M. Lynden-Bell J. Chem. Phys. 114, 367 (2001)

    A Monte Carlo Study of the Symmetry Breaking of I3- in Aqeous Solution Using Multistate Diabatic Hamiltonian

  • 39. C.J. Margulis and D.F. Coker J. Chem. Phys. 113, 6113 (2000)

    Applying DIM for Flexible Polyatomic Electronic Excited States

  • 38. C.J. Margulis, D.A. Horner, S. Bonella, and D.F. Coker J. Phys. Chem. A. 103, 9552 (1999)

    Vibrational Dynamics of the I3 radical

  • 37. C.R. Anderson, D.F. Coker, J. Eckert, and A.L.R. Bug J. Chem Phys. 111, 7599 (1999)

    Computational Study of Molecular Hydrogen in Zeolite Na-A Part I: Potential Energy Surfaces and Thermodynamic Separation Factors for Ortho and Para Hydrogen

  • 36. M.F. Herman and D.F. Coker J. Chem. Phys. 111, 1801 (1999)

    Classical Mechanics and the Spreading of the Localized Wavepackets in Condensed Phase Molecular Systems

  • 35. V.S. Batista and D.F. Coker J. Chem. Phys. 110, 6583 (1999)

    Erratum: On Nonadiabatic Molecular Dynamics Simulations of the Photofragmentation and Geminate Recombination Dynamics in Size-Selected I2-Arn Cluster Ions

  • 34. C. Margulis and D.F. coker J. Chem. Phys. 110, 5677 (1999)

    Nonadiabatic Molecular Dynamics Simulations of the Photofragmentation and Geminate Recombination Dynamics in Size-Selected I2-(CO2)n Cluster Ions

  • 33. Classical and Quantum Dynamics in Condensed Matter Simulations, Eds., B.J. Berne, G. Ciccotti, and D.F. Coker World Scentific, 1998

  • 32. D.F. Coker, H.S. Mei, and J.P. Ryckaert, pp 539 - 582 in 'Classical and Quantum Dynamics in Condensed Matter Simulations', Eds. B.J. Berne, G. Ciccotti, and D.F. Coker World Scientific, 1998

    Thermal Average Time Correlation Functions from Nonadabatic MD: Application to Rate Constants for Condensed Phase Non-adiabatic Reactions

  • 31. D. Laria, G. Ciccotti, D.F. Coker, R. Kapral, and M. Ferrario, pp 697 - 720 in 'Cassical and Quantum Dynamics in Condensed Matter Simulations', Eds B.J. Berne, G. Ciccotti, and D.F. Coker World Scientific, 1998

    Nonadiabatic Molecular Dynamics Method for Diffusion

  • 30. V.S. Batista and D.F. Coker J. Chem. Phys. 106, 6923 (1997)

    Nonadiabatic Molecular Dynamics Simulation of Ultrafast Pump-Probe Experiments on I2 in Solid Rare Gases

  • 29. V.S. Batista and D.F. Coker J. Chem. Phys. 106, 7102 (1997)

    Nonadiabatic Molecular Dynamics Simulation of the Photofragmentation and Geminate Recomination Dynamics in Size-Selected I2-Arn Cluster Ions

  • 28. S. Bonella, G. Ciccotti, and D.F. Coker Molec. Phys. 89, 1203 (1996)

    Research Note on the Semiclassical Limit of the Intermediate Scattering Function

  • 27. V.S. Batista and D.F. Coker J.Chem.Phys. 105, 4033 (1996)

    Nonadiabatic Molecular Dynamics Simulation of Photodissociation of I2 in Liquid Xenon

  • 26. H.S. Mei, L. Xiao, and D.F. Coker J. Chem. Phys. 105, 3938 (1996)

    Calculation of the Rotational Raman Spectrum of H2 in Ice

  • 25. H.S. Mei and D.F. Coker J. Chem. Phys. 104, 4755 (1996)

    Quantum Molecular Dynamics Studies of H2 Transport in Water

  • 24. L. Xiao and D.F. Coker J. Chem. Phys. 102, 1107 (1995)

    Nonadiabatic Dynamical Studies of the Rotational Raman Spectrum of H2 in Water

  • 23. D.F. Coker and L. Xiao J. Chem. Phys. 102, 496 (1995)

    Methods for Molecular Dynamics with Nonadiabatic Transitions

  • 22. W. Wang, K.A. Nelson, L. Xiao, and D.F. Coker J. Chem. Phys. 101 9663 (1994)

    Molecular Dynamics Simulation Studies of Solvent Cage Effects on Photodissociation in Condensed Phases

  • 21. W. Wang, L. Dhar, J. Fourkas, K.A. Nelson, L. Xiao, and D.F. Coker in Femtosecond Reation Dynamics, Editor D.A. Weisma, (North-Holland, Amsterdam, 1994)

    Femtosecond Spectroscopy of Reaction Dynamics in Condensed Phases

  • 20. L. Xiao and D.F. Coker J. Chem. Phys. 100 8646 (1994)

    The Influence of Nonadiabatic Rotational Transitions on the Lineshapes of the Rotational Raman Spectrum of H2 in Liquid Argon

  • 19. D.F. Coker, 315-377 in Computer Simulation in Chemica Physics, Eds. M. Allen and D. Tildesley, NATO ASI series, (Kluwer, Dodrecht, 1993)

    Computer Simulation Methods for Nonadiabatic Dynamics in Condensed Systems

  • 18. D. Hsu and D.F. Coker J. Chem. Phys. 97, 5931 (1992)

    Comment on: Quantum Dynamics via Mobile Basis Sets: The Diract Variational Principle

  • 17. B. Space, H. Liu, B.J. Berne, and G. Martyna J. Chem. Phys. 97, 2002 (1992)

    Density Dependence of Excess Electronic Ground State Energies in Simple Atomic Fluids

  • 16. D. Hsu and D.F. Cooker J. Chem. PHys. 96 4266 (1992)

    Quantum Dynamics via Mobile Basis Sets: The Dirac Virational Principle

  • 15. B. Space and D.F. Coker J. Chem. Phys. 96, 652 (1992)

    Dynamics of Trapping and Localization of Excess Electrons in Simple Fluids

  • 14. J. Alper, H. Dothe, and D.F. Coker Chem. Phys. 153, 51 (1991)

    Vibrational Structure of the Solvated Glycine Zwitterion

  • 13. D.F. Coker and B.J. Berne 'Excess Electrons in Dielectric Media' Ed. Jean-Paul Jay Gerin and C. Ferradini (CRC Press, Boca Raton, Florida) 211-257 (1991)

    Quantum Calculations on Excess Electrons in Disordered Media

  • 12. B. Space and D.F. Coker J. Chem. Phys. 94, 1976 (1991)

    Nonadiabatic Dynamics of Excited Excess Electrons in Simple Fluids M

  • 11. D.F. Coker and B.J. Berne J. Chem. Phys. 89, 2128 (1988)

    Excess Electronic States in Fluid Helium

  • 10. D.F. Coker and R.O. Watts J. Phys. Chem. 91, 4866 (1987)

    The Diffusion Monte Carlo Method for Quantum Systems at Non-Zero Temperatures

  • 9. D.F. Coker and R.O. Watts J. Chem. Phys. 86, 5703 (1987)

    Diffusion Monte Carlo Simulation of Condensed Systems

  • 8. D.F. Coker, D. Thirumalai, and B.J. Berne J. Chem. Phys. 86, 5689 (1987)

    Path Integral Monte Carlo Studies of the Behavior of Excess Electrons in simple Fluids

  • 7. D.F. Coker and R.O. Watts, J. Phys. Chem. 91, 2513 (1987)

    Structure and Vibrational Spectroscopy of the Water Dimer Using Quantum Simulation

  • 6. D.F. Coker and R.O. Watts Molec. Phys. 58, 1113 (1986)

    Quantum Simulations of Systems with Nodal Surfaces

  • 5. D.F. Coker, R.E. Miller, and R.O. Watts J. Chem. Phys. 82, 3554 (1985)

    The Infrared Predissociation Spectra of Water Clusters

  • 4. L.A. Westling, M.G. Raymer, M.G. Sceats, and D.F. Coker Opt. Comm. 47, 212 (1983)

    Observation of Intensity Fluctuations and Mode Correlations in a Broadband CW Dye Laser

  • 3. D.F. Coker, J.R. Reimers, and R.O. Watts Aust. J. Phys. 35, 623 (1982)

    Infrared Absorption Spectrum of Water

  • 2. D.F. Coker and R.O. Watts, Molec. Phys. 44, 1303 (1981)

    Chemical Equilibria in Mixtures of Bromine and Chlorine

  • 1. D.F. Coker and R.O. Watts, Chem. Phys. Letts. 78, 333 (1981)

    Computer Simulation of Reactive Liquids in Chemical Equilibrium