
CH651 Assignment 2, Due in Class, Monday November 9, 2015

Prof. David F. Coker

November 2, 2015

Q2.1 (i) Construct the harmonic oscillator potential energy matrix with elements Vi,j = 〈i|V (x̂)|j〉,
where V (x) = 1

2mω
2x2. Use the lowest four harmonic oscillator states: |0〉, |1〉, |2〉, |3〉 to

build your matrix. (ii) Now construct the kinetic energy matrix Ti,j = 〈i|p̂2/2m|j〉 in this
same eigenstate representation and sum your results to compute the total hamiltonian matrix.

Q2.2 To a good approximation the small amplitude intramolecular vibrations of molecules can be
described by independent normal modes. This idea assumes that the vibrational hamiltonian
can be written as a sum on independent harmonic oscillator terms, one for each normal
mode of vibration. For a nonlinear triatomic, like water, there are three modes of vibration
called the symmetric stretch, the antisymmetric stretch, and the bend and the normal mode
hamiltonian has the form:

Ĥvib =
1
2

(P̂ 2
S + ω2

SQ̂
2
S) +

1
2

(P̂ 2
A + ω2

AQ̂
2
A) +

1
2

(P̂ 2
B + ω2

BQ̂
2
B)

In this normal mode description the masses can be absorbed into the definition of the normal
mode coordinate and momentum operators e.g. Q̂S , P̂S .

(i) Using the definitions of the coordinate and momentum operators for each mode in terms
of their raising, â+

k , and lowering, â−k , operators:

Q̂k =

√
h̄

2ωk
(â+
k + â−k ) P̂k = i

√
h̄ωk

2
(â+
k − â

−
k )

obtain an expression for the molecular vibrational hamiltonian of a water molecule written
in terms of the number operators for each mode defined as n̂k = â+

k â
−
k .

(ii) Compute the effect of the number operator for mode k, defined above, on energy eigenstate
number nk for this mode with wave function ψ

(k)
nk (Qk).

(iii) Using the separation of variables idea, write down the general eigenfunction for this three
mode problem. Give an expression for the general eigenstate energy of your eigenfunction.

(iv) From spectroscopy experiments, the normal mode vibrational frequencies of water are
found to be ν̄S = 3652 cm−1, ν̄A = 3756 cm−1, and ν̄B = 1595 cm−1. (Here ν̄ = 1/λ is a
convenient unit of frequency called the “wave number”, it is the number of wavelengths of
the exciting radiation that fit into a centimeter.) In a table give the energies and vibrational
state assignments, i.e. the set of quantum number values (nS , nA, nB) for the five lowest
energy states: the ground state, the first excited state, etc. up to the fourth excited state.
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Useful information: The raising and lowering operators for the different normal modes
satisfy the following commutation relations:

[â−j , â
+
k ] = δjk

The effect of the raising and lowering operators for mode k on the energy eigen function
number nk for mode k are summarized below:

â+
k ψ

(k)
nk

(Qk) =
√
nk + 1ψ(k)

nk+1(Qk)

â−k ψ
(k)
nk

(Qk) =
√
nkψ

(k)
nk−1(Qk)

Q2.3 In class we employed a small τ approximation to the operator exp[−τ(Â + B̂)] where the
operators Â and B̂ did not commute i.e. [Â, B̂] 6= 0. In particular we used the approximation
exp[−τ(Â+B̂)] = exp[−τ Â] exp[−τ B̂]+O(τ2), i.e. we used an approximation that was exact
to first order in τ , so that the error was of order τ2, i.e. O(τ2).

(i) Compute the error term that is O(τ2) with this approximation.

(ii) Suppose we were to use the following approximation:

exp[−τ(Â + B̂)] ∼ exp[− τ
2 Â] exp[−τ B̂] exp[− τ

2 Â].

Compute error term that is O(τ2) with this approximation. Comment on the accuracy of
this approximate form.

Q2.4 Consider a time dependent hamiltonian in which the potential energy depends on time so
Ĥ(t) = p̂2/2m+ V (x̂, t).

(i) For this hamiltonian, compute the commutator [Ĥ(t1), Ĥ(t2)] for t1 6= t2.

(ii) In class we realized that when the hamiltonian is time dependent the propagator for the
time dependent Schrödinger equation should take the form exp[−(i/h̄)

∫∞
0 Ĥ(t)dt]. Consider

two times t1 and t2 that are infinitesimally displaced so t2 = t1 + τ , where τ is the small
positive displacement in time. Write down an approximation, accurate to first order in τ , to
the propagator K(x2, t2, x1, t1) that evolves the system from x1 at t1 to x2 at t2.

(iii) Show how you would use your approximate propagator from (ii) to evolve the wave
function from its initial shape at t1 to its final shape at t2.

Q2.5 In class we made use of the complete orthogonal set of eigenfunctions of the momentum
operator to transform between position and momentum representations. In the position
representation, the momentum eigenstates have the following form: 〈x|k〉 = 1√

2π
exp[ikx].

(i) Show that these functions are eigenfunctions of the momentum operator and give their
eigenvalues. Show that these functions are also eigenfunctions of the free particle hamiltonian
operator. Further, show that they CAN NOT be normalized in the usual sense. What does
this tell you about a free particle of mass M with a definite energy E = h̄2k2/2M .

(ii) Despite these problems of normalization, the momentum eigenfunctions are particularly
useful for their mathematical properties. Linear combinations of these un-normalizable func-
tions can actually be used to represent normalized wave packets. For example, let C(k) be
the coefficient function that gives the amplitude of each free particle energy or momentum
eigenstate in an expansion of a wave packet of the following form:

ψ(x, t) = 1√
2π

∫∞
−∞C(k) exp[i(kx− h̄k2

2M t)]dk
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Suppose the coefficients of the different momentum eigenfunctions are given by

C(k) = N exp[−a(k − k0)2].

Using the following result: I =
∫∞
−∞ exp[−αx2 + βx]dx =

√
π/α exp[β2/4α], obtain an ex-

pression for the resulting wave packet, ψ(x, t).

(iii) Set t = 0 and show that the wave packet constructed in this way can be normalized

(iv) You should be able to rearrange your expression for the time dependent wave packet to
show that it has the form of a real valued function multiplied by a phase factor. The real valued
function will have the form of a traveling gaussian with time dependent mean position, x0(t),
and variable width, σ(t), i.e. the real valued part will have the form exp[−(x−x0(t))2/2σ2(t)].
Obtain simple expressions for x0(t) and σ(t) and interpret your results.

Q2.6 Consider a particle of massM moving in quartic well so the potential has the form V (x) = cx4

where c is a positive constant. Obtain an estimate for the ground state energy of this oscillator
by using a normalized Gaussian variational function.

Q2.7 (a) Solve Heisenberg’s equations of motion

dÂH
dt

=
i

h̄
[ĤH , AH ] (1)

for the time evolution of the raising and lowering operators ÂH = b̂+H and ÂH = b̂H for a
harmonic oscillator where we can write the hamiltonian as:

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 =

h̄ω

2
(P̂ 2 + Q̂2) = h̄ω(b̂+b̂+

1
2

) (2)

so AH(t) = eiĤt/h̄Âe−iĤt/h̄ and the Schrödinger operators for the transformed momentum and
coordinates of the oscillator are P̂ = p̂/(h̄ωm)1/2 and Q̂ = x̂(mω/h̄)1/2, so b̂ = (Q̂+ iP̂ )/

√
2,

b̂+ = (Q̂− iP̂ )/
√

2, and [b̂, b̂+] = 1

(b) Show that Q̂H(t) = Q̂ cosωt+ P̂ sinωt.

(c) Solve Heisenberg’s equation of motion for the operators ÂH = b̂+H b̂H and ÂH = b̂H b̂
+
H

Q2.8 (i) Using the same ideas as outlined in Q2.5 explain why it makes sense to write the normal-
ized momentum eigen states as 〈x2|p〉 = 1√

2πh̄
exp[ ih̄px2]

(ii) Use the methods we employed in class to compute an exact, explicit form for the free par-
ticle propagator matrix elements K(x2, x1, t) = 〈x2| exp[−iĤFP t/h̄]|x1〉 with ĤFP = p̂2/2m.

(iii) Use your free propagator to evolve the initial wave function ψ(x1, t = 0) = (2a/π)1/4 exp[−ax2
1]

out to time t.

Q2.9 The Pauli spin matrices

Sx =
1
2
h̄

(
0 1
1 0

)
, Sy =

1
2
h̄

(
0 −i
i 0

)
, Sz =

1
2
h̄

(
1 0
0 −1

)
, and S2 =

1
4
h̄2

(
1 0
0 1

)
(3)

are the matrix representations of the operators Ŝx, Ŝy, Ŝz, and Ŝ2 in the basis set of spin
functions {|α〉, |β〉}.
(a) Diagonalize the Sx, Sy, Sz spin matrices to obtain the eigenvalues and eigenfunctions of
the corresponding operators in terms of this basis set.
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(b) Suppose a measurement of Ŝz for an electron gives the value +1
2 h̄; if a measurement of

Ŝx is then carried out on the resulting state, give the probabilities for each possible outcome.

Q2.10 A model for conjugated polymers that are used in organic light emitting diodes (OLEDs)
capable of qualitatively describing the optical absorption properties of these materials as-
sumes that every time a carbon atom is added to the growing conjugated polymer chain, an
additional electron joins the molecule’s π-electron system, which can be treated as a system
of independent electrons (non-interacting fermions) that is contained in a growing 1D infinite
square well potential. Suppose each additional C atom adds one bond length, l, to the total
growing length, L, of the 1D infinite square well, so for an N C-atom polymer, L = Nl.
Compute the lowest excitation energy, ∆E, of the π-electron system of a conducting polymer
containing N carbon atoms (assume that N is even to simplify the problem).

Hint: In the limit of large N you should find that your result predicts that the excitation
energy goes like ∆E ∼ 1/N , NOT like 1/N2 as you might guess if the length were the only
factor influencing the N dependence. The trick here is to use the Pauli exclusion principle.
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