CHG651 Assignment 3, Monday, December 1, 2014. Due Monday
December 8, 2014

Prof. David F. Coker

Q1 Consider the time evolution of a spin state of an electron in a magnetic field. Let the unper-
turbed hamiltonian be the Zeeman hamiltonian (with static field By taken in the z direction):
Hy = fyBOS' », where 7 is the gyromagnetic ratio and S, is the usual spin operator. Let the cou-
pling hamiltonian be a time varying Zeeman interaction in the x direction, V = vBj S, coswt,
where By is the strength of the perturbing magnetic field and w is it’s frequency.

(i) If the electron is initially in spin state o at ¢ = 0, what is the probability of ending up
in state in state 8 as a function of time ¢? Take w = By, and use first order perturbation
theory.

(ii) How does the answer to part (i) change when second order perturbation theory is used?

(iii) Now lets solve the time-dependent Schrédinger equation exactly for the same problem.
To do this, first write down the coupled equations for the coefficients C, and Cp associated
with the states a and 3, respectively. Now take the same limit w = vBy in these equations.
Carefully consider the time dependence of each term and neglect all terms that vary as
exp[£2iwt] in the resulting differential equations. Show that the solutions are the same as
those obtained from perturbation theory (taking w = vyBy) in the limit of small B;.

Q2 Consider a system of two spin-1/2 particles so that the zero order hamiltonian just contains
the kinetic energy due to their spin angular momentum so Hy = 5‘% + 5’22 Suppose that in
the absence of a magnetic field the two spins interact weakly (small \) according to a spin
vector dot product coupling term V = AS; - Sg so the total hamiltonian is H = Hy + V.
Suppose the coupled system starts out in |sj,mq, s9,ma) = |%,%,%,—%) at t = 0. Use
first order time dependent perturbation to compute the probability that the system is in
state |s1,mq, So,ma) = |%, —%, %, %> at time t. (Hint: compute the vector dot product using
angular momentum raising and lowering operators.)

Q3 (i) For classical correlation functions show that (A(£)B(0))) = —(A(t)B(0)) and more generally
that (A" (£)B(0)) = (—1)"(A™(t)B™(0)), where A™ denotes the n-th time derivative.
(ii) For a classical harmonic oscillator whose position and momentum are x and p define the
complex amplitude a(t) = z(t)+(i/(mw))p(t) so that z = (1/2)(a+a*) and p = —(imw/2)(a—
a*). The classical quantities @ and a* evolve according to @ = —iwa and a* = iwa*. Show that
for a harmonic oscillator at thermal equilibrium (a?) = ((a*)?) = 0 and (|a|?) = 2k, T/(mw?).

Use these results to compute classical position correlation function of a harmonic oscillator,

(z(t)2(0))-



(iii) For the real and imaginary part of the quantum time correlation function

Clp = Cap(t) + Cip(t) = 2ReCap(t)
Cup = Cap(t) — Chp(t) = 2iImCyp(t)

Show that C}z(—t) = C4(t) and Cyp(—t) = —Cg,(t) and that

Cipw) = | dte"Clp(t) = Can(w) + Cpa(~w)

and Cyz(w) = Cap(w) — Cpal—w)
Q4 (i) The general solutions of the normal mode equations of motion for the harmonic bath are

u;(t) = u;(0) cos(wjt) + w;luj(O) sin(w;t)
Uj (t) = *Q)j’LLj(O) sin(wjt) + 1 (O) COS(th)

In class we showed that the normal mode positions, uy, and velocities, iy, of a classical thermal
harmonic bath satisfy the following thermal equilibrium results (uguy) = (kpT/w?)dkr and
(Upug) = kpToxr. (a) Show that these results hold in general at time ¢ and for example
w3 (ug(t)uy(t)) = (i;(t)iy(t)) = kpTd; . (b) Using the above results compute the velocity
correlation function for classical bath harmonic oscillators, (u,;(0)u;(t))

(ii) Using harmonic oscillator raising and lowering operators and thermal equilibrium results
for quantum harmonic oscillators obtain an expression for the quantum analogue of the result

you derived above i.e. (4;(0)u;(t))q

Q5 (i) For the quantum bath operator A= >, ¢jtij (where the c; are constants) use the results
obtained in class to express the Fourier transform of the quantum time correlation function
Caa(t) i.e. [%2 dte™'Caa(t) in terms of the spectral density J(w).

(ii) Show that [ dte™!Cpa(t) = M [F_ dte!Cya(—t) = P [%_ dte™tC 44(2)



