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December 8, 2014

Prof. David F. Coker

Q1 Consider the time evolution of a spin state of an electron in a magnetic field. Let the unper-
turbed hamiltonian be the Zeeman hamiltonian (with static field B0 taken in the z direction):
H0 = γB0Ŝz, where γ is the gyromagnetic ratio and Ŝz is the usual spin operator. Let the cou-
pling hamiltonian be a time varying Zeeman interaction in the x direction, V = γB1Ŝx cosωt,
where B1 is the strength of the perturbing magnetic field and ω is it’s frequency.

(i) If the electron is initially in spin state α at t = 0, what is the probability of ending up
in state in state β as a function of time t? Take ω = γB0, and use first order perturbation
theory.

(ii) How does the answer to part (i) change when second order perturbation theory is used?

(iii) Now lets solve the time-dependent Schrödinger equation exactly for the same problem.
To do this, first write down the coupled equations for the coefficients Cα and Cβ associated
with the states α and β, respectively. Now take the same limit ω = γB0 in these equations.
Carefully consider the time dependence of each term and neglect all terms that vary as
exp[±2iωt] in the resulting differential equations. Show that the solutions are the same as
those obtained from perturbation theory (taking ω = γB0) in the limit of small B1.

Q2 Consider a system of two spin-1/2 particles so that the zero order hamiltonian just contains
the kinetic energy due to their spin angular momentum so Ĥ0 = Ŝ2

1 + Ŝ2
2 . Suppose that in

the absence of a magnetic field the two spins interact weakly (small λ) according to a spin
vector dot product coupling term V = λS1 · S2 so the total hamiltonian is H = H0 + V .
Suppose the coupled system starts out in |s1,m1, s2,m2〉 = |12 ,

1
2 ,

1
2 ,−

1
2〉 at t = 0. Use

first order time dependent perturbation to compute the probability that the system is in
state |s1,m1, s2,m2〉 = |12 ,−

1
2 ,

1
2 ,

1
2〉 at time t. (Hint: compute the vector dot product using

angular momentum raising and lowering operators.)

Q3 (i) For classical correlation functions show that 〈Ä(t)B(0))〉 = −〈Ȧ(t)Ḃ(0)〉 and more generally
that 〈A(2n)(t)B(0)〉 = (−1)n〈A(n)(t)B(n)(0)〉, where A(n) denotes the n-th time derivative.

(ii) For a classical harmonic oscillator whose position and momentum are x and p define the
complex amplitude a(t) = x(t)+(i/(mω))p(t) so that x = (1/2)(a+a∗) and p = −(imω/2)(a−
a∗). The classical quantities a and a∗ evolve according to ȧ = −iωa and ȧ∗ = iωa∗. Show that
for a harmonic oscillator at thermal equilibrium 〈a2〉 = 〈(a∗)2〉 = 0 and 〈|a|2〉 = 2kbT/(mω2).

Use these results to compute classical position correlation function of a harmonic oscillator,
〈x(t)x(0)〉.
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(iii) For the real and imaginary part of the quantum time correlation function

C+
AB = CAB(t) + C∗AB(t) = 2ReCAB(t)

C−AB = CAB(t)− C∗AB(t) = 2iImCAB(t)

Show that C+
AB(−t) = C+

BA(t) and C−AB(−t) = −C−BA(t) and that

C+
AB(ω) =

∫ ∞
−∞

dteiωtC+
AB(t) = C̃AB(ω) + C̃BA(−ω)

and C−AB(ω) = C̃AB(ω)− C̃BA(−ω)

Q4 (i) The general solutions of the normal mode equations of motion for the harmonic bath are

uj(t) = uj(0) cos(ωjt) + ω−1
j u̇j(0) sin(ωjt)

u̇j(t) = −ωjuj(0) sin(ωjt) + u̇j(0) cos(ωjt)

In class we showed that the normal mode positions, uk, and velocities, u̇k, of a classical thermal
harmonic bath satisfy the following thermal equilibrium results 〈ukuk′〉 = (kBT/ω2

k)δkk′ and
〈u̇ku̇k′〉 = kBTδkk′ . (a) Show that these results hold in general at time t and for example
ω2
j 〈uj(t)uj′(t)〉 = 〈u̇j(t)u̇j′(t)〉 = kBTδj,j′ . (b) Using the above results compute the velocity

correlation function for classical bath harmonic oscillators, 〈u̇j(0)u̇j′(t)〉
(ii) Using harmonic oscillator raising and lowering operators and thermal equilibrium results
for quantum harmonic oscillators obtain an expression for the quantum analogue of the result
you derived above i.e. 〈u̇j(0)u̇j′(t)〉Q

Q5 (i) For the quantum bath operator Â =
∑
j cj ûj (where the cj are constants) use the results

obtained in class to express the Fourier transform of the quantum time correlation function
CAA(t) i.e.

∫∞
−∞ dte

iωtCAA(t) in terms of the spectral density J(ω).

(ii) Show that
∫∞
−∞ dte

iωtCAA(t) = eβh̄ω
∫∞
−∞ dte

iωtCAA(−t) = eβh̄ω
∫∞
−∞ dte

−iωtCAA(t)
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