
CH651 Assignment 2, Wednesday, October 22, 2014. Due

Wednesday October 29, 2014

Prof. David F. Coker

Q1 In class we employed a small τ approximation to the operator exp[−τ(Â + B̂)] where the
operators Â and B̂ did not commute i.e. [Â, B̂] 6= 0. In particular we used the approximation
exp[−τ(Â+B̂)] = exp[−τ Â] exp[−τ B̂]+O(τ2), i.e. we used an approximation that was exact
to first order in τ , so that the error was of order τ2, i.e. O(τ2).

(i) Compute the error term that is O(τ2) with this approximation.

(ii) Suppose we were to use the following approximation:

exp[−τ(Â + B̂)] ∼ exp[− τ
2 Â] exp[−τ B̂] exp[− τ

2 Â].

Compute error term that is O(τ2) with this approximation. Comment on the accuracy of
this approximate form.

Q2 Consider a time dependent hamiltonian in which the potential energy depends on time so
Ĥ(t) = p̂2/2m+ V (x̂, t).

(i) For this hamiltonian, compute the commutator [Ĥ(t1), Ĥ(t2)] for t1 6= t2.

(ii) In class we realized that when the hamiltonian is time dependent the propagator for the
time dependent Schrödinger equation should take the form exp[−(i/h̄)

∫∞
0 Ĥ(t)dt]. Consider

two times t1 and t2 that are infinitesimally displaced so t2 = t1 + τ , where τ is the small
positive displacement in time. Write down an approximation, accurate to first order in τ , to
the propagator K(x2, t2, x1, t1) that evolves the system from x1 at t1 to x2 at t2.

(iii) Show how you would use your approximate propagator from (ii) to evolve the wave
function from its initial shape at t1 to its final shape at t2.

Q3 In class we made use of the complete orthogonal set of eigenfunctions of the momentum operator
to transform between position and momentum representations. In the position representation,
the momentum eigenstates have the following form: 〈x|k〉 = 1√

2π
exp[ikx].

(i) Show that these functions are eigenfunctions of the momentum operator and give their
eigenvalues. Show that these functions are also eigenfunctions of the free particle hamiltonian
operator. Further, show that they CAN NOT be normalized in the usual sense. What does
this tell you about a free particle of mass M with a definite energy E = h̄2k2/2M .

(ii) Despite these problems of normalization, the momentum eigenfunctions are particularly
useful for their mathematical properties. Linear combinations of these un-normalizable func-
tions can actually be used to represent normalized wave packets. For example, let C(k) be
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the coefficient function that gives the amplitude of each free particle energy or momentum
eigenstate in an expansion of a wave packet of the following form:

ψ(x, t) = 1√
2π

∫∞
−∞C(k) exp[i(kx− h̄k2

2M t)]dk

Suppose the coefficients of the different momentum eigenfunctions are given by

C(k) = N exp[−a(k − k0)2].

Using the following result: I =
∫∞
−∞ exp[−αx2 + βx]dx =

√
π/α exp[β2/4α], obtain an ex-

pression for the resulting wave packet, ψ(x, t).

(iii) Set t = 0 and show that the wave packet constructed in this way can be normalized

(iv) You should be able to rearrange your expression for the time dependent wave packet to
show that it has the form of a real valued function multiplied by a phase factor. The real valued
function will have the form of a traveling gaussian with time dependent mean position, x0(t),
and variable width, σ(t), i.e. the real valued part will have the form exp[−(x−x0(t))2/2σ2(t)].
Obtain simple expressions for x0(t) and σ(t) and interpret your results.

Q4 Consider the time dependent Schrödinger equation for a system of electrons at positions x,
and nuclei of mass M at positions R

ih̄
∂Ψ(x,R, t)

∂t
= ĤΨ(x,R, t) (1)

where the total Hamiltonian is written in the usual way, Ĥ = −h̄2

2M ∇
2
R + Ĥel(x,R), in terms

of the nuclear kinetic operator and the electronic Hamiltonian Ĥel, which is an operator
in the electronic sub-space that depends parametrically on the nuclear configuration. In
the adiabatic representation, we write the coupled electron-nuclear wave function using the
Born-Huang expansion

Ψ(x,R, t) =
∑
n

χan(R, t)Φa
n(x,R) (2)

in terms of the unique orthonormal, complete basis set, Φa
n(x,R), of instantaneous adia-

batic electronic states defined as the set of eigenfunctions of the electronic Hamiltonian with
eigenenergies En(R) which depend on nuclear configuration. The adiabatic basis functions
satisfy the eigenvalue problem Ĥel(R)Φa

n(x,R) = En(R)Φa
n(x,R) for each nuclear configura-

tion, R. In class we showed that the time dependent expansion coefficient functions of this
basis set, χan(R, t), satisfy the following equations of motion:

ih̄χ̇am =
−h̄2

2M
∇2
Rχ

a
m + Em(R)χam −

h̄2

2M

∑
n

{2〈Φa
m|∇R|Φa

n〉 · ∇R + 〈Φa
m|∇2

R|Φa
n〉}χan (3)

and the brackets in the above result contain matrix elements that involve integrals over
the electronic coordinates x only. In this representation all the coupling between coefficient
functions of different electronic surfaces arises from the action of the nuclear kinetic operator
on the adiabatic electronic basis states due to the parametric dependence of these basis states
on nuclear configuration. These coupling terms appear in the last term on the right hand side
of the above expression. If this term is small compared to the other terms in this equation and
approximately set to zero, we see that the adiabatic coefficient functions, χam(R), for different
electronic states evolve independently and we arrive at the Born-Oppenheimer approximation.

Consider a two electronic state, one nuclear degree of freedom system for which the electronic
hamiltonian matrix elements in a so called diabatic representation are given by the following
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functions 〈Φd
1|Ĥel|Φd

1〉 = ε1(R), 〈Φd
2|Ĥel|Φd

2〉 = ε2(R) and 〈Φd
1|Ĥel|Φd

2〉 = 〈Φd
2|Ĥel|Φd

1〉 = ∆(R).
Assume these diabatic basis functions form a complete orthonormal set.

(i) Give expressions for the adiabatic eigenstate energies E1(R), and E2(R), and show that the
corresponding adiabatic eigenfunctions can be written as the following linear combinations of
the diabatic functions:

Φa
1(x,R) = cos[θ(R)]Φd

1(x) + sin[θ(R)]Φd
2(x) (4)

Φa
2(x,R) = − sin[θ(R)]Φd

1(x) + cos[θ(R)]Φd
2(x)

Where θ(R) is the so called mixing angle of the transformation between the diabatic and
adiabatic basis states and it depends on nuclear configuration according to the following:

θ(R) =
1
2

(π/2− α(R)) (5)

with

α(R) = sin−1

[
(ε2(R)− ε1(R))√

(ε2(R)− ε1(R))2 + 4∆2(R)

]
(6)

(ii) Use the above results to compute the derivative and second derivative nonadiabatic cou-
pling matrices appearing in Eq.(3).

(iii) Compute the adiabatic Hellman-Feynman force matrix elements 〈Φa
m|∂Ĥel

∂R |Φ
a
n〉 for our

two state model.

Q5 (a) Solve Heisenberg’s equations of motion

dÂH
dt

=
i

h̄
[ĤH , AH ] (7)

for the time evolution of the raising and lowering operators ÂH = b̂+H and ÂH = b̂H for a
harmonic oscillator where we can write the hamiltonian as:

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 =

h̄ω

2
(P̂ 2 + Q̂2) = h̄ω(b̂+b̂+

1
2

) (8)

so AH(t) = eiĤt/h̄Âe−iĤt/h̄ and the Schrödinger operators for the transformed momentum and
coordinates of the oscillator are P̂ = p̂/(h̄ωm)1/2 and Q̂ = x(mω/h̄)1/2, so b̂ = (Q̂+ iP̂ )/

√
2,

b̂+ = (Q̂− iP̂ )/
√

2, and [b̂, b̂+] = 1

(b) Show that Q̂H(t) = Q̂ cosωt+ P̂ sinωt.
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