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Q1 Consider the time evolution of a spin state of an electron in a magnetic field. Let the unper-
turbed hamiltonian be the Zeeman hamiltonian (with static field B0 taken in the z direction):
H0 = γB0Ŝz, where γ is the gyromagnetic ratio and Ŝz is the usual spin operator. Let the cou-
pling hamiltonian be a time varying Zeeman interaction in the x direction, V = γB1Ŝx cosωt,
where B1 is the strength of the perturbing magnetic field and ω is it’s frequency.

(i) If the electron is initially in spin state α at t = 0, what is the probability of ending up
in state in state β as a function of time t? Take ω = γB0, and use first order perturbation
theory.

(ii) How does the answer to part (i) change when second order perturbation theory is used?

(iii) Now lets solve the time-dependent Schrödinger equation exactly for the same problem.
To do this, first write down the coupled equations for the coefficients Cα and Cβ associated
with the states α and β, respectively. Now take the same limit ω = γB0 in these equations.
Carefully consider the time dependence of each term and neglect all terms that vary as
exp[±2iωt] in the resulting differential equations. Show that the solutions are the same as
those obtained from perturbation theory (taking ω = γB0) in the limit of small B1.

Q2 (a) Solve Heisenberg’s equations of motion

dÂH
dt

=
i

h̄
[ĤH , AH ] (1)

for the time evolution of the raising and lowering operators ÂH = b̂+H and ÂH = b̂H for a
harmonic oscillator where we can write the hamiltonian as:

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 =

h̄ω

2
(P̂ 2 + Q̂2) = h̄ω(b̂+b̂+

1
2

) (2)

so AH(t) = eiĤt/h̄Âe−iĤt/h̄ and the Schrödinger operators for the transformed momentum and
coordinates of the oscillator are P̂ = p̂/(h̄ωm)1/2 and Q̂ = x(mω/h̄)1/2, so b̂ = (Q̂+ iP̂ )/

√
2,

b̂+ = (Q̂− iP̂ )/
√

2, and [b̂, b̂+] = 1

(b) Show that Q̂H(t) = Q cosωt+ P̂ sinωt.
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Q3 Consider a system of two spin-1/2 particles so that the zero order hamiltonian just contains
the kinetic energy due to their spin angular momentum so Ĥ0 = Ŝ2

1 + Ŝ2
2 . Suppose that in

the absence of a magnetic field the two spins interact weakly (small λ) according to a spin
vector dot product coupling term V = λS1 · S2 so the total hamiltonian is H = H0 + V .
Suppose the coupled system starts out in |s1,m1, s2,m2〉 = |12 ,

1
2 ,

1
2 ,−

1
2〉 at t = 0. Use

first order time dependent perturbation to compute the probability that the system is in
state |s1,m1, s2,m2〉 = |12 ,−

1
2 ,

1
2 ,

1
2〉 at time t. (Hint: compute the vector dot product using

angular momentum raising and lowering operators.)

Q4 Consider an electron moving in the x-direction and suppose it is harmonically bound to a
molecule so its hamiltonian has the form

Ĥ0 =
p̂2

2m
+

1
2
mω2

0x̂
2 (3)

The eigenstates, |n〉, of Ĥ0 are thus generated by the raising and lowering operators and
satisfy b̂+|n〉 =

√
n+ 1|n+ 1〉 and b̂|n〉 =

√
n|n− 1〉 where

b̂ =
(
mω0

2h̄

)1/2

(x̂+
i

mω0
p̂)

b̂+ =
(
mω0

2h̄

)1/2

(x̂− i

mω0
p̂)

(i) Use the Kramers-Heisenberg expression for the polarizability matrix elements

(αkm)ij =
1
h̄

∑
n

[
〈k|µ̂i|n〉〈m|µ̂j |n〉

(ω + ωnm)
− 〈n|µ̂i|m〉〈k|µ̂j |n〉

(ω − ωnk)
] (4)

and the fact that µ̂x = −ex̂ to show that the ground state polarizability in the x-direction is

(α11)xx =
(e2/m)

(ω2
0 − ω2)

(5)

(ii) Compute the first excited state polarizability (α00)xx
(iii) Compute the off diagonal polarizability (α01)xx
(iv) Compute the off diagonal polarizability (α02)xx

Q5 Consider the situation of two harmonic Born-Oppenheimer potential surfaces describing the
vibrational motion of a diatomic molecule with bond length R. One surface describes nuclear
motion in the lower electronic state |φm〉 and the other in a higher excited electronic state
|φk〉. Suppose that the vibrational frequency of each harmonic surface is the same, ω0, but
that the higher excited state potential surface is shifted by an amount, ∆, relative to the lower
electronic state potential so that the normalized ground vibrational states on the different
electronic surfaces have the following forms:

χmνm=0 =
(
α

π

)1/4

e−αR
2/2

χkνk=0 =
(
α

π

)1/4

e−α(R−∆)2/2
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Here α = (h̄/mω0)1/2.

(i) Compute the relative intensity of the electronic transition between these ground vibrational
states νm = 0→ νk = 0 as a function of the shift ∆ between the two potentials.

(ii) The relative intensities of the transitions between vibrational states on two different
electronic potential surfaces are given by the Franck-Condon factors |S(νm, νk)|2 where

S(νm, νk) =
∫ +∞

−∞
χm∗νm

(R)χkνk
(R)dR (6)

Show that the Franck-Condon factors for the transitions from any initial vibrational state νm
sum over all final vibrational states to give unity i.e.∑

νk

|S(νm, νk)|2 = 1 (7)

Q6 Consider an N electron hamiltonian, Ĥ. Using the identity

[[x̂i, Ĥ], x̂i] = 2x̂iĤx̂i − Ĥx̂2
i − x̂2

i Ĥ (8)

where x̂i is the operator representing the x coordinate of electron i, and assuming that the
potential is independent of momentum,

(i) prove that
2me

h̄2

∑
k

(Ek − Es)|〈k|x̂i|s〉|2 = 1 (9)

where |k〉 and Ek are the eigenfunctions and eigenvalues of the many electron hamiltonian i.e.
Ĥ|k〉 = Ek|k〉. Similar expressions hold for the ŷi and ẑi coordinate operators of each electron.
If the total electronic dipole moment vector operator is ~µ = −e

∑N
i=1 ~ri then the square length

of the electronic transition dipole moment, which in class we showed was proportional to the
intensity of the transition between states |k〉 and |s〉, is

|~µks|2 = e2
N∑
i=1

(|〈k|x̂i|s〉|2 + |〈k|ŷi|s〉|2 + |〈k|ẑi|s〉|2 (10)

(ii) Use your above result together with the definition of the oscillator strength of the transi-
tion between these states

fks =
2meω

3h̄e2
|~µks|2 (11)

to prove the Thomas-Reiche-Kuhn sum rule∑
k

fks = N (12)

(iii) Note that this result is independent of initial state s. What does this imply when
interpreting the intensities in the spectrum of a many electron system.

3


