Probability and Statistics (and Integrals)

1. Suppose we are given the following data:

	X	P(x)
	1	0.20
	2	0.25
	4	0.55

- (a) Calculate the average value of x, $\langle x \rangle$.
- (b) Calculate the average value of x^2 , $\langle x^2 \rangle$.

2. Calculate the following integrals:

a.
$$\int_{A}^{A} f_{odd}(x) dx$$
b.
$$\int_{A}^{A} f_{odd}(x) f_{even}(x) dx$$

3. Prove explicitly that
$$\int_{-\infty}^{\infty} e^{-ax^2} dx = 2 \int_{-\infty}^{0} e^{-ax^2} dx$$

4. Show explicitly that
$$\int_{-\infty}^{\infty} xe^{-ax^2} dx = 0$$

5. Without calculators or computers, evaluate the integral
$$\int_{4}^{20} xe^{x^2} dx$$
. (Hint: substitution)

6. Without calculators or computers, evaluate the integrals. (Hint: integration by parts)

a.
$$\int_{A}^{B} xe^{-6x} dx$$

b.
$$\int (4x+1)\cos(\pi x) dx$$

$\int \ln(x) dx$

Series and Limits

- 1. Show that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. When is this approximation, $e^x \approx 1 + x$, reasonable?
- 2. Prove that $\int e^{ax} dx = \frac{1}{a} e^{ax} + C$ by using the Taylor series expansion of e^{ax} .
- 3. What is the geometric series?
- 4. Evaluate the series $S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$

The Binomial Distribution and the Stirling Approximation

- 1. Calculate the number of ways of dividing 10 distinguishable objects into three groups containing
- 2, 5, and 3 objects.
- 2. In how many ways can a committee of three be chosen from nine people?
- 3. Prove that $xln(x) \rightarrow 0$ as $x \rightarrow 0$.
- 4. Prove that the maximum value of $W(N,N_1) = N!/(N-N_1!)N_1!$ is given by $N_1=N/2$.
- 5. Prove that the maximum value of $W(N_1, N_2, ...N_r) = \frac{N!}{N_1! N_2! ... N_r!}$, where $N_1 + N_2 + ...N_r = N$ is given

by $N_1=N_2=...=N_r=N/r$. Plot your data to support your answer.

6. Prove that
$$\sum_{k=0}^{N} \frac{N!}{k!(N-k)!} = 2^{N}$$