Discussion Section #7 – March 21, 2014 (Chapter 8)

1. A thermodyamic cycle for mutations in protein folding Suppose you can measure the stability of a wild-type protein, $\Delta G_1 = G_{folded} - G_{unfolded}$, the free energy difference between folded and unfolded states. A mutant of that protein has a single amino acid replacement. Design a thermodynamic cycle that will help you find the free energy difference $\Delta G_2 = G_{unfolded,mutant} - G_{unfolded,wildtype}$, the effect of the mutation on the unfolded state.
 2. Free energy of an ideal gas (a) For an ideal gas, calculate F(V), the free energy versus volume, at constant temperature. Hint: Start from the differential form of F(T,V,N)
(b) Compute G(V). Note that V is not a natural variable of G=G(T,P,N)
3. Heat capacity of an ideal gas.
(a) The energy of an ideal gas does not depend on volume, $\left(\frac{\partial U}{\partial V}\right)_T = 0$. Use this fact to prove
that the heat capacity $C_V = \left(\frac{\partial U}{\partial T}\right)_V$ for an ideal gas is independent of volume.

(b) Show that the heat capacity $C_p = \left(\frac{\partial H}{\partial T}\right)_p$ for an ideal gas is also independent of volume.
3. Computing entropies . Assume the following where needed: (1) T=300K (2) $C_v=(5/2)Nk$ for a diatomic molecule.
(a) One mole of O_2 gas fills a room of 500m ³ . What is the entropy change ΔS for squeezing the gas into 1cm ³ in the corner of the room?
(b) One mole of O_2 gas is in a room of 500m ³ . What is the entropy change ΔS for heating the room from T=270K to 330K?
(c) The free energy of a conformational motion of a loop in a protein is $\Delta G=2 \text{ kcal} \cdot \text{mol}^{-1}$. The enthalpy change is $\Delta H=0.5 \text{ kcal} \cdot \text{mol}^{-1}$. Compute ΔS .