
CH352 Assignment 3: Due Thursday, 27 April 2017

Prof. David Coker

Thursday, 20 April 2017

Q1 Adiabatic quasi-static volume and temperature changes in
ideal gases

In the last assignment you showed that the internal energy of a mono-atomic ideal gas sample
containing N particles was proportional to the temperature, T and N , so that U = 3

2NkBT . Since
the heat capacity at constant volume is CV = (∂U/∂T )V,N , CV = 3

2NkB for an ideal gas. Thus, in
this system, we find dU = CV dT .

(i) Use the above result and the differential form of the fundamental energy equation, dU =
T dS − pdV , (assuming fixed N) to obtain an expression for the differential entropy change
dS in a general, constant-N , ideal gas process.

Solution:

dS =
1

T
dU +

p

T
dV

=
CV
T

dT +
p

T
dV

=
3

2

NkB
T

dT +
p

T
dV

(ii) Consider a quasi-static transformation of an N -particle sample of ideal gas, and re-express
your result for dS from (i) for this special case ideal gas process.

Solution:

For a quasi-static process, pint = pext = NkBT/V , so

dS =
CV
T

dT +
NkB
V

dV

= NkB

(
3

2

1

T
dT +

1

V
dV

)

1



(iii) Integrate your result from (ii) to obtain a general expression for the entropy change ∆S =
S2 − S1 accompanying the quasi-static, fixed-N transformation from (T1, V1), to (T2, V2).

Solution:

∆S =

∫ 2

1
dS

= NkB

(
3

2
ln

(
T2
T1

)
+ ln

(
V2
V1

))

(iv) In an adiabatic quasi-static expansion of an ideal gas, how do you reconcile the following two
facts: (1) the increase in volume should lead to an increase in entropy, but (2) in an adiabatic
process δq = 0 so there should be no change in entropy (since dS = δq/T = 0)?

Solution:

3

2
ln

(
T2
T1

)
= − ln

(
V2
V1

)
The increase in entropy from an increase in volume is exactly offset by the decrease in
entropy from a decrease in temperature.

Q2 The work of compression

One mole of a van der Waals gas is compressed quasi-statically and isothermally from V1 to V2.
For a van der Waals gas the equation of state is

p =
RT

(V − b)
− a

V 2
(Q2.1)

where a and b are positive constants of the gas, V is the volume, and RT is the gas constant times
temperature. The constant b is related to the excluded volume of each gas molecule, and a is related
to the strength of intermolecular attraction between molecules.

(i) Write an expression for the work done.
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Solution:

w = −
∫ V2

V1

p dV

= −
∫ V2

V1

(
RT

(V − b)
− a

V 2

)
dV

= RT ln

(
V1 − b

V2 − b

)
+ a

(
1

V1
− 1

V2

)

(ii) Compared to compression of an ideal gas, is more or less work required in the low density
limit? What about the high density limit? Why?

Solution:

In the low density limit, the volumes for this mole of gas are large compared to b, and the
work required to compress a van der Waals gas is less because of the negative attractive
(a) term.

In the high density limit, the volumes are relatively similar and the excluded volume (b)
term will dominate, increasing the work required for compression compared to an ideal
gas. Therefore, the work required to compress a van der Waals gas is more than for an
ideal gas.

Q3 Ideal efficiency of a car engine

Suppose the compression ratio in your car engine is V2/V1 = 8. For a diatomic gas, CV = (5/2)NkB
and for ethane CV ∼ 5NkB.

(i) What is the efficiency of your engine if the working fluid is a diatomic gas?

Solution:

Based on the textbook,

η = 1 − 1

rNkB/CV

where r is the compression ratio.

= 1 − 1

82/5

= 0.564725 = 56.4725%
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(ii) Which is more efficient: a diatomic gas or ethane?

Solution:

The ideal diatomic gas is more efficient: 0.340246 < 0.564725.

(iii) Would your engine be more or less efficient with a higher compression ratio?

Solution:

A higher compression ratio would make the engine more efficient: If the compression ratio
is r = 1, the engine has 0% efficiency for any value of heat capacity. A large compression
ratio means you’re subtracting a smaller number from 1 to calculate the efficiency.

Q4 Computing enthalpy and entropy with a temperature depen-
dent heat capacity

The heat capacity of liquid n-butane depends on temperature:

Cp(T ) = a+ bT (Q4.1)

where a = 100 J K−1 mol−1 and b = 0.1067 J K−2 mol−1 from its freezing temperature Tf = 140 K
to Tb = 270 K, its boiling temperature.

(i) Compute ∆H for heating liquid butane from TA = 170 K to TB = 270 K at constant pressure.

Solution: (
∂H

∂T

)
p

= Cp

dH = Cp(T ) dT

= (a+ bT ) dT

∆H =

∫ 270K

170K
(a+ bT ) dT

=

(
aT +

1

2
bT 2

)∣∣∣∣∣
270K

170K

= 100 K a+
1

2
b
(

2702 − 1702
)

K2

∆H = 12.3474 kJ mol−1
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(ii) Compute ∆S for the same process.

Solution:

dS =
Cp
T

dT

∆S =

∫ 270K

170K

(
a

T
+ b

)
dT

= (a lnT + bT )
∣∣270K
170K

= a ln

(
270

170

)
+ b100 K

∆S = 56.9324 J K−1 mol−1

Q5 Objects in thermal contact and enthalpy of vaporization of
water at T = 473K

(i) Suppose two objects A and B with heat capacities CA and CB and initial temperatures TA
and TB, are brought into thermal contact. If CA � CB is the equilibrium temperature closer
to TA or TB or is not enough information given? What about if cA � cB? Show some math
to support your argument.

Solution:

The equilibrium temperature of the system, as derived in class will be

T =
CATA + CBTB
CA + CB

.

Then, if CA � CB,

T ≈ CATA
CA

= TA

For cA � cB: To give an answer, the relative sizes of the two objects need to be known,
so not enough information is given. cA is a specific heat, and it is an intensive property
of an object or material.

(ii) Suppose you want to know how much heat it would take to boil water at p = 1 atm and T =
473 K, rather than at T = 373 K. At T = 373 K the enthalpy of vaporization is ∆Hboil(T =
373 K) = 40.7 kJ mol−1. Assuming that the heat capacities of the liquid (Cp,liquid = 75 J K−1 mol−1)
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and the vapor (Cp,vapor = 3.5 J K−1 mol−1) are constant over this temperature range, calculate
the enthalpy of vaporization at T = 473 K, ∆Hboil(T = 473 K).

Solution:

heating

boiling

Hc,l Hc,g

Hh,l Hh,g

∆Hc,boil

∆Hh,boil

∆Hheat,liquid ∆Hheat,gas

∆Hc,boil = 40.7 kJ mol−1

∆Hheat,liquid =

∫ 473K

373K
Cp,liquid dT

= 7500 J mol−1

∆Hheat,gas =

∫ 473K

373K
Cp,vapor dT

= 350 J mol−1

∆Hh,boil = −∆Hheat,liquid + ∆Hc,boil + ∆Hheat,gas

= (−7.5 + 40.7 + 0.35) kJ mol−1

∆Hh,boil = 33.6 kJ mol−1

Q6 Oxygen gas at room temperature

Consider a gas phase system of N identical, indistinguishable, independent oxygen atoms, with
partition function Q. Suppose the single particle partition function is the product of a translational
partition function qt and an electronic partition function qe, so

q = qtqe. (Q6.1)

The nine electronic states of the lowest energy 3P electronic level are split due to spin-orbit coupling.
Table 1 lists various characteristics of these states as well as some of the higher energy levels. Data
are reported for T = 300 K, and for convenience energies are given in Kelvin units.
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Table 1: Atomic oxygen electronic energy level characteristics
2S+1LJ g = 2J + 1 (∆εn/kB)/K β∆εn (β∆εn)2

3P2 5 0 0 0
3P1 3 232 0.7733 0.5980
3P0 1 348 1.16 1.3456
1D2 5 22 860 76.2
1S0 1 48 621 162.1

(i) Use the fact that the internal energy is

U = − 1

Q

∂Q

∂β
(Q6.2)

to show that

U = −N
(

1

qt

∂qt
∂β

+
1

qe

∂qe
∂β

)
= Ut + Ue (Q6.3)

Solution:

Q =
qN

N !
=
qNt q

N
e

N !

U = − 1

Q

∂Q

∂β

= −∂ lnQ

∂β

= −N ∂

∂β
ln (qeqt)

= −N
(
∂ ln qt
∂β

+
∂ ln qe
∂qe

)
= −N

(
1

qt

∂qt
∂β

+
1

qe

∂qe
∂β

)
= Ut + Ue

where Ui = −N 1
qi
∂qi
∂β .

(ii) Calculate (a) the translational component of the internal energy Ut and (b) the translational
component of the constant volume heat capacity:

Ct
V =

(
∂Ut

∂T

)
N,V

. (Q6.4)
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Solution: As derived in the last homework, the internal energy for a structureless ideal
gas

Ut =
3

2
NkBT

Ct
V =

3

2
NkB

(iii) (a) Comment on why we can neglect the contributions from the states 1D2 and 1S0 at room
temperature and calculate the general expression in this case for (b) the electronic component
of the internal energy Ue and (c) the electronic heat capacity

Ce
V =

(
∂Ue

∂T

)
N,V

= −kBβ2
(
∂Ue

∂β

)
N,V

. (Q6.5)

Solution: The 1D2 and 1S0 states can be ignored because they are so high in energy
that at room temperature, they are not populated and therefore do not contribute to the
energy or the heat capacity.

qe =
3∑
i=1

gie
−εiβ

Ue = −N 1

qe

∂qe
∂β

= N
1

qe

(
0 + g2ε2e

−ε2β + g3ε3e
−ε3β

)
Ue =

N

qe

3∑
i=2

giεie
−εiβ

Ce
V = −kBβ2

(
∂Ue

∂β

)
N,V

= NkBβ
2

[
1

qe

∂2qe
∂β2

− 1

q2e

(
∂qe
∂β

)2
]

= NkBβ
2 1

q2e

qe 3∑
i=2

giε
2
i e

−εiβ −

 3∑
i=2

giεie
−εiβ

2


Page 8



(iv) You should be able to write your results from (ii) and (iii) in the form CV = NkB × x where
x is some dimensionless number. Compute these dimensionless numbers for Ct

V and, using
the data in Table 1 for T = 300 K, Ce

V at this temperature. From this, you can get an idea
of how big the spin-orbit contribution to the heat capacity is compared to the translational
heat capacity for atomic oxygen at room temperature.

Solution:

Ct
V =

3

2
NkB

Ce
V (300 K) = 0.1407NkB

At this temperature, the translation heat capacity is only about 10 times larger than the
electronic heat capacity.
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