
CH352 Assignment 1: Due Tuesday, 6 February 2017

Prof. David Coker

Tuesday, 31 January 2017

Q1 The Maxwell-Boltzmann velocity probability distribution func-
tion

According to the kinetic theory of gases, the energies of molecules of mass m moving with velocity vx in the
x-direction are given by εx = 1

2mv
2
x. The Maxwell-Boltzmann velocity distribution gives that the fraction of

particles, p(vx), moving with velocity vx is proportional to exp[−εx/kBT ] = exp[−mv2x/2kBT ].

(i) Write down the normalized Maxwell-Boltzmann velocity probability distribution.

(ii) Use your normalized velocity distribution to compute the average kinetic energy,
〈
1
2mv

2
x

〉
.

(iii) Compute the average velocity 〈vx〉.

(i) Normalized Maxwell-Boltzmann velocity probability distribution

We are trying to find α s.t.

p(vx) = αe−mv
2
x/2kBT (Q1.1)

is normalized. Because vx is defined on the whole real number line, we need to integrate over [−∞,∞]:

1

α
=

∫ ∞
−∞

e−mv
2
x/2kBT dvx. (Q1.2)

As was given in class: ∫ ∞
−∞

e−ax
2

=

√
π

a
(Q1.3)

where in this case a = m/2kBT .

1

α
=

√
2πkBT

m
(Q1.4)

p(vx) =

√
m

2πkBT
e−mv

2
x/2kBT (Q1.5)
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(ii) Average kinetic energy,
〈
1
2
mv2x

〉
〈

1

2
mv2x

〉
=

∫ ∞
−∞

1

2
mv2x

√
m

2πkBT
e−mv

2
x/2kBT dvx (Q1.6)

Let m/2kBT = γ

=

√
m2γ

4π

∫ ∞
−∞

v2x e−γv
2
x dvx (Q1.7)

= −
√
m2γ

4π

∫ ∞
−∞

d
dγ e−γv

2
x dvx (Q1.8)

= −
√
m2γ

4π
d
dγ

√
π

γ
(Q1.9)

=
m

4γ
(Q1.10)〈

1

2
mv2x

〉
=
kBT

2
(Q1.11)

Interestingly, this does not depend on the mass of the gas, but it does depend on the temperature.

Also, this might not match with the normal 3
2kBT for the average kinetic energy of a gas that you’ve heard;

that is because we calculated only the average kinetic energy in the x-direction, but y and z will have the
same kinetic energy contributions.

(iii) Average velocity 〈vx〉

If you did a lot of work for this question, that’s unfortunate. There are two ways the answer can be found
easily.

First, thinking physically, the +x-direction is not special (in the absence of an external force) nor is the −x-
direction. Therefore, because there is no average motion, the integrals in the negative and positive directions
will cancel, and the average velocity is zero.

Second, thinking more mathematically, vx is an odd function and e−γv
2
x is an even function. An even function

multiplied by an odd function will give an odd function. Then, the integral over all space of an odd function
is always zero, by symmetry (the area under the x-axis is the same as the area above the x-axis).

〈vx〉 = 0

Q2 Unbiased coin-flipping random walkers

Consider a group of unbiased coin-flipping, random walkers. At each time interval they flip their coins, and
if one gets a head she takes a step to the right, while if a walker gets a tail he takes a step to the left. After
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N time intervals the fraction of random walkers that have taken m steps to the right, and thus N −m steps
to the left, is given by the binomial distribution

P (m,N) =

(
1

2

)N
N !

m!(N −m)!
(Q2.1)

Let’s get an idea of what this distribution looks like by Taylor series expanding lnP (m,N) as a function of
m (for fixed N) in displacements, [m−m∗], from its peak value which occurs at say m = m∗.

(i) Use Stirlings approximation, lnn! ∼ n lnn − n to find the value of m = m∗ where lnP (m,N) has its
maximum value for a given fixed number of time intervals, N .

(ii) The Taylor series expansion in terms of m for fixed N we are looking for has the following form, keeping
only terms to second order, [m − m∗]2, in displacements of m from its value m∗ at the peak of the
distribution:

lnP (m,N) ∼ lnP (m∗, N) +
d lnP

dm
(m∗, N)[m−m∗] +

1

2

d2 lnP

dm2
(m∗, N)[m−m∗]2. (Q2.2)

Compute the values of the derivative functions appearing in the above results, for fixed N at the point
m = m∗ you determined in part (i).

(iii) Let P (m∗, N) = P ∗(N) and exponentiate both sides of the above result using your derivative values
and obtain an approximate expression for P (m,N)

(iv) If you have done things correctly in the above steps your result should be a normalized Gaussian
distribution which has the general form

P (x) =
1

σ
√

2π
exp[−x2/2σ2] (Q2.3)

where σ is the width of the Gaussian and x is the displacement from the peak of the distribution. By
comparing your result with this general form obtain an expression for the width σm of your distribution
of displacements, [m −m∗] (number of steps from the peak), and then use your width to determine
the normalization constant, P ∗(N), of your distribution. Your results will depend on N , the number
of time intervals for which the random walkers have been flipping and stepping. Comment on how the
shape of the distribution changes as N increases.

(v) Use your distribution to compute the root-mean-square (rms) displacement
√
〈(m−m∗)2〉 of the group

of random walkers.

Note: This random walk model provides a very realistic description of how particles are kicked around
by collisions with solvent molecules that cause Brownian motion and diffusion.

(i) Value m∗ that maximizes P

lnP (m,N) = −N ln 2 + lnN !− lnm!− ln(N −m)!

∂

∂m
lnP (m,N) = − ∂

∂m
m lnm− ∂

∂m
(N −m) ln(N −m)

= 1 + lnm− 1 + ln(N −m)

= − ln
m

N −m

0 = ln
m∗

N −m∗

m∗ = N/2

Note: while this initially may not seem to depend on the “fairness” of the coin, if the coin were not fair,
there would be a pmH term that would not cancel immediately.
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(ii) The Taylor series expansion of P in terms of m for fixed N

d lnP
dm (m∗, N) = 0

by definition because the maximum is a zero of the first derivative (see above).

d2 lnP
dm2 = − d

dm lnm+ d
dm ln(N −m)

= − 1

m
− 1

N −m

d2 lnP
dm2 (m∗, N) = − 4

N

(iii) Second order approximation of P

lnP (m,N) ∼ lnP ∗ + 0− 2

N
[m−N/2]2

P (m,N) ∼ P ∗e−2(m−N/2)
2/N

(iv) Normalized Gaussian distribution

Let x = m−m∗ = m−N/2, then

P (m,N) = P ∗e−2x
2/N

and σ2
m = N/4 .

P (m,N) =

√
2

Nπ
e−2x

2/N

is the normalized second order approximation of P (m,N) around the maximum of the function.

Because σ2
m is linearly dependent on N , the distribution gets wider (and flatter) as the number of steps

increases. This can also be seen by the inverse relationship of the second derivative to N .
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(v) Root-mean-square displacement

We are looking for
√
〈(m−m∗)2〉 =

√
〈x2〉:

〈
x2
〉

=

∫ ∞
−∞

x2
√

2

Nπ
e−2x

2/N dx

= −
√

2

Nπ

∂

∂(2/N)

∫ ∞
−∞

e−2x
2/N dx

= −
√

2

Nπ

∂

∂(2/N)

√
Nπ

2

=
1

2

√
2

Nπ

N3π

8√
〈x2〉 =

√
N

4

which, as expected, is the same as σm.

Q3 Polymer Length Distribution

We can use a simple monomer binding (probability p) and chain termination (probability 1 − p) model to
explore polymer growth. We can find that the fraction of chains of length k, that is the probability P (k) of
finding a polymer chain of length k monomer units in the final reaction mixture, is

P (k) =
nk∑∞
k=1 nk

(Q3.1)

where nk = pk−1(1− p). We can use this probability distribution, together with the geometric series result
that

S∞ =

∞∑
k=1

xk−1 =
1

1− x
, |x| < 1 (Q3.2)

to compute the average polymer chain length as

〈k〉 =

∞∑
k=1

kP (k) =
1

1− p
. (Q3.3)

When working with polymer beads like polystyrene it is often important to know the polydispersity of your
sample. A useful measure of polydispersity is the root mean square fluctuation from the average chain length,
or variance, σk, of the chain length distribution defined as

σ2
k =

〈
(k − 〈k〉)2

〉
= 〈k2〉 − 〈k〉2 . (Q3.4)

Using the same techniques for manipulating geometric series results, obtain an expression for σk in terms
of p for our polymer growth model. Suppose p = 0.001; compute the mean polymer chain length and its
variance.

We are given

〈k〉 =
1

1− p
.
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This means we just need to find 〈k2〉. This is given by

〈k2〉 =

∞∑
k=1

k2P (k)

=
1∑∞

k=1 p
k−1(1− p)

∞∑
k=1

k2pk−1(1− p)

= 1× 1− p
p

∞∑
k=1

k2pk

Then, using the result shown below (or a table of series results),

=
1− p
p
× p(1 + p)

(1− p)3

〈k2〉 =
1 + p

(1− p)2

Then, to get σk, we can use these results to find

σ2
k =

1 + p

(1− p)2
− 1

(1− p)2

σ2
k =

p

(1− p)2

For p = 0.001, 〈k〉 = 1.001 and σ2
k = 0.001002 .

A few other notes: first,

∞∑
k=1

pk−1(1− p) =

∞∑
k=1

pk−1 − pk+1

=

∞∑
k=1

pk−1 −
∞∑
k=1

pk

=

∞∑
k=0

pk −
∞∑
k=1

pk

= p0 +

∞∑
k=1

pk −
∞∑
k=1

pk

= 1

and second,

∞∑
k=1

kpk = p+ 2p2 + 3p3 + 4p4 + . . .

and
∞∑
k=1

k2pk = p+ 4p2 + 9p3 + 16p4 + . . .

They obviously look fairly similar, but also notice that

d
dp

∞∑
k=1

kpk = 1 + 4p+ 9p2 + 16p3 + . . .
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This is even more similar, and they only differ by a factor of p. We also know the value of the infinite sum
of pk (from eq. (Q3.2)), which can be seen to be related in the same manner. Using this,

∞∑
k=1

k2pk = p d
dp

∞∑
k=1

kpk

= p d
dp p

d
dp

∞∑
k=1

pk

= p d
dp p

d
dp

(
p

1− p

)
∞∑
k=1

k2pk =
p(1 + p)

(1− p)3
.

This gives the sum of the series needed above.

Q4 Probability to partially fill a nanotube

Consider the injection of a small amount of gas (n = 3 gas molecules) into a short length (5 molecular units)
of carbon nanotube. Suppose initially that the cross-section of the nanotube is 3 molecular units and that
only one molecule can occupy a cell at any one time. A typical configuration of the initial system is depicted
schematically in fig. 1.

× ×

×

Figure 1: Configuration of n = 3 gas molecules (displayed as a “×” filling the cells) in a small nanotube
with width 3 molecular units and length 5 molecular units

(i) What is the probability that all the gas molecules are found just in the top layer of cells?

(ii) What is the probability that all the gas molecules will be found in only the top three layers of cells?

(iii) Now lets make the nanotube wider, so the cross-section of the tube is 4 molecular units. Keeping
everything else fixed, what is the probability that the 3 gas molecules are now found in the top layer
of the wider tube? Is it more or less probable to find all three molecules in the top layer for a wider
tube?

(i) Probability of all in top row, ptop

ptop =
ntop
ntotal

=

(
3
3

)(
15
3

)
ptop =

1

455
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(ii) Probability of all in the top three rows

ptop =
ntop
ntotal

=

(
9
3

)(
15
3

)
ptop =

84

455

ptop =
12

65

(iii) ptop for a wider tube

ptop =

(
4
3

)(
20
3

)
ptop =

1

285

It is more likely (not quite twice as likely) to find all three molecules in the top row of the wider tube as
compared to all the molecules in the top row of the narrower tube.

Q5 Extrema of multivariate functions with constraints

(i) Find the maximum of the function f(x, y) = −(x−a)2− (y−b)2 subject to the constraint that y = kx.

(ii) Find the minimum of the paraboloid f(x, y) = (x − x0)2 + (y − y0)2 subject to the constraint that
y = 2x.

(iii) Release the constraint in (ii) and find the absolute minimum of the paraboloid.

(i) f(x, y) = −(x− a)2 − (y − b)2, y = kx

Defining g(x, y) = y − kx = 0 as the constraint,

∇f(x, y) = λ∇g(x, y)(
−2(x− a),−2(y − b)

)
= λ (−k, 1)

x =
λk

2
+ a and y = −λ

2
+ b
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Then using the constraint,

0 = −λ

(
1

2
+
k2

2

)
+ b− ak

λ =
2 (b− ak)

1 + k2

x =
a+ kb

1 + k2
and y = k

a+ kb

1 + k2

fmax(x, y) = −
(
a+ kb

1 + k2
− a
)2

−
(
k
a+ kb

1 + k2
− b
)2

fmax(x, y) = − (b− ak)2

k2 + 1

We know this is a maximum because f(x, y) is concave down.

(ii) f(x, y) = (x− x0)
2 + (y − y0)

2, y = 2x

Again, g(x, y) = y − 2x = 0, and

L(x, y, λ) = f(x, y)− λg(x, y)

= (x− x0)2 + (y − y0)2 − λy + 2λx

∇L(x, y, λ) =
(
2(x− x0) + 2λ, 2(y − y0)− λ, −y + 2x

)
0 =

(
2(x− x0) + 2λ, 2(y − y0)− λ, −y + 2x

)(
x = −λ+ x0, y =

λ

2
+ y0, y = 2x

)
λ =

2

5
(2x0 − y0)

x =
1

5
(x0 + 2y0) and y =

2

5
(x0 + 2y0)

fmax(x, y) =

(
x0 + 2y0

5
− x0

)2

+

(
2x0 + 4y0

5
− y0

)2

fmax(x, y) =
(y0 − 2x0)2

5

This is guaranteed to be a minimum because this function is concave up.

(iii) f(x, y) = (x− x0)
2 + (y − y0)

2

x = x0, y = y0, and fmax(x, y) = 0

Q6 Calculating the entropy of dipoles in a field

You have a solution of dipolar molecules with a positive charge at the head and a negative charge at the
tail. When there is no electric field applied to the solution, the dipoles point north (n), east (e), west (w),

9



and south (s) with equal probabilities (i.e., pn = 1
4 , pe = 1

4 , ps = 1
4 , and pw = 1

4 ). However when a field
is applied to the solution, we find a different distribution with more positive head groups pointing north so
that the probabilities are now pfn = 7

16 , pfe = 1
4 , pfw = 1

4 , and pfs = 1
16 .

(i) What is the polarity of the applied field (i.e., in which direction does the field have its most positive
pole)?

(ii) Calculate the entropy of the system in the absence of the field.

(iii) Calculate the entropy of the system in the presence of the field.

(iv) Does the system become more ordered or less ordered when the field is applied?

(i) Polarity of field

Since more positive head groups are pointing north, the most positive pole of the field is to the south.

(ii) Entropy with no external field, S0

Using eq. (5.2) on page 82 of Dill and Bromberg,

S0 = −kB
∑
i

pi ln pi

= −kB (pn ln pn + pe ln pe + pw ln pw + ps ln ps)

= kB ln 4

S0 = 1.386 kB = 1.913× 10−23 J K−1

(iii) Entropy in the external field,

Sf = −kB
(

7

16
ln

7

16
+

1

4
ln

1

4
+

1

4
ln

1

4
+

1

16
ln

1

16

)
Sf = 1.228 kB = 1.695× 10−23 J K−1

(iv) Change in ordering

The system becomes more ordered. The entropy decreases because they are more likely to be facing in one
direction as opposed to the anisotropy in the absence of the field.
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