Quiz 9

Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the	Question:	1	2	3	4	Total
	Points:	10	10	5	0	25
page.	Score:					

Name: .

- 1. (10 points) State versus process
 - (a) Circle all of the following that are state variables. If you don't know what a particular variable represents, please ask. For example, p is pressure.

 $p V \mu N T q U w S$

(b) Circle all of the following that are process (or path-dependent) variables.

 $p V \mu N T q U w S$

- 2. (10 points) Intensive versus extensive
 - (a) Circle all of the following that are **intensive variables**.

p V μ N T q U w S

(b) Circle all of the following that are **extensive variables**.

$$p V \mu N T q U w S$$

3. (5 points) Fill in the blanks in the following sentences with the correct words or variables.

_____ is the capacity to do work. _____ governs the tendency of matter or energy to flow. The flow of energy (with or without work being done) is _____.

______ is a "force" for volume change. Chemical potential is a "force" for ______ change.

4. For fun if you finish early: We have a system that has an extensive property X that is conserved: dX = 0. For a system partitioned into parts A and B with a partition that allows only equilibration of X between A and B, what is the condition of equilibrium for this system if

$$\frac{\partial S}{\partial X} = -y \tag{1}$$

where y is some intensive property of the system.

If A and B are not initially in equilibrium with each other, is the process of A and B equilibrating reversible? quasistatic? adiabatic? Can it be described by some other term?