Quiz 7

Answer the questions in the spaces provided. If you run	Question:	1	2	Total
out of room for an answer, continue on the back of the	Points:	25	0	25
page.	Score:			

Name:

- 1. Suppose we have a molecule with two angles θ and ϕ . The energy with respect to θ is $\epsilon_{\theta}(\theta) = 1 \cos(\theta \alpha)$, and the energy with respect to ϕ is $\epsilon_{\phi}(\phi) = 1 \cos(2\phi \beta)$ where α and β are real constants.
 - (a) (10 points) What is an absolute minimum of the total energy $E(\theta, \phi) = \epsilon_{\theta}(\theta) + \epsilon_{\phi}(\phi)$ and at what angles does this minimum occur? Note, because this is a periodic function, it has an infinite number of minima, but just find one.

```
E_{\min} =
	heta_{\min} =
\phi_{\min} =
```

(b) (5 points) Now Taylor expand this energy function around some point ($\theta = \alpha, \phi = \beta/2$) to the first non-vanishing order (the lowest order that does not make the function zero everywhere).

 $E(\theta,\phi) \approx$

(c) (10 points) Someone else has found a Taylor series for a different energy function:

$$E(x, y) \approx (x+a)^2 + (y+b)^2.$$

If the angles x and y are constrained such that x + y = m, what is the minimum energy and the angles at which it occurs for this constrained system?

 $E_{\min} =$ $x_{\min} =$ $y_{\min} =$ 2. For fun if you finish early: Let's impose essentially the same constraint on our initial energy function from (a) and (b):

$$\theta + \phi = m.$$

What is the energy minimum of the Taylor series approximation? Can you find the constrained energy minimum without doing a Taylor series expansion?