Quiz 7

Answer the questions in the spaces provided. If you run Question: ! 2 Total
out of room for an answer, continue on the back of the Points: 25 0 25
page.
Score:

Name:

1. Suppose we have a molecule with two angles 6 and ¢. The energy with respect to 6 is eg(0) = 1—cos(f—a),
and the energy with respect to ¢ is e4(¢) = 1 — cos(2¢ — ) where a and § are real constants.

(a) (10 points) What is an absolute minimum of the total energy E (0, ¢) = €9(0) + €4(¢) and at what
angles does this minimum occur? Note, because this is a periodic function, it has an infinite number
of minima, but just find one.

Solution: Both energy components will be 0 when the argument to the cos is zero.
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(b) (5 points) Now Taylor expand this energy function around some point (6 = a, ¢ = 8/2) to the first
non-vanishing order (the lowest order that does not make the function zero everywhere).

Solution:

E©0,¢)=1—cos0+1—cos0=0
EM(9,¢) =0

because this point is a extremum of the function (a minimum to be exact, as found above).
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(¢) (10 points) Someone else has found a Taylor series for a different energy function:

E(z,y) ~ (x4 a)® + (y + b)*.
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If the angles z and y are constrained such that x + y = m, what is the minimum energy and the
angles at which it occurs for this constrained system?

Solution:
L(z,y,\) = (z+a)* + (y+b)* = ANz +y—m)
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2. For fun if you finish early: Let’s impose essentially the same constraint on our initial energy function

from (a) and (b):
0+ ¢=m.

What is the energy minimum of the Taylor series approximation? Can you find the constrained energy
minimum without doing a Taylor series expansion?

Solution:
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It would be very difficult to solve this without doing a Taylor series expansion.
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