Quiz 5

Answer the questions in the spaces provided. If you run	Question:	1	2	Total
out of room for an answer, continue on the back of the	Points:	25	0	25
page.	Score:			

Name and section: _

1. The general form of the Taylor series of a function f(x) around the point a is

$$f(x) = \sum_{i=0}^{\infty} \frac{1}{i!} \left. \frac{\mathrm{d}^{i} f(x)}{\mathrm{d} x^{i}} \right|_{x=a} (x-a)^{i}$$
(1)

where the value of the *i*th derivative is evaluated at the point x = a.

(a) (10 points) What is the Taylor series of $f(x) = \sin(x)$ up to i = 3 (third order) using the above expression around the point x = 0?

 $f(x) \approx$

(b) (10 points) What is the Taylor series of $g(x) = ax^3 - bx$ around x = 0 up to third order (i = 3)?

 $g(x) \approx$

(c) (5 points) How does the Taylor series of g(x) change if we take the Taylor series to fourth order (i = 4)? Answer in no more than one sentence.

2. For fun if you finish early: Up to second order, what is the Taylor series of the function

$$h(x,y) = \sin(x)\cos(y) \tag{2}$$

around the point $(x, y) = (\pi, 0)$?