Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the page.

Question:	1	2	3	Total
Points:	20	5	0	25
Score:				

Name and section:

1. Consider a system divided into two subsystems A and B each with three particles $(N_A = N_B = 3)$ in either of two energy states $\varepsilon = 1$ or $\varepsilon = 0$. The initial state of this system is shown in fig. 1. Assume the system starts with all three particles in A in the $\varepsilon = 1$ state, and then the subsystems are put into thermal contact where energy is allowed to move between A and B, but the total energy $U = U_A + U_B$ remains constant.

$$\begin{array}{cccc}
\varepsilon = 1 & \bullet & \bullet & B \\
\varepsilon = 0 & & & & \\
N_A = 3 & & N_A = 3 \\
U_A = 3 & & U_B = 0
\end{array}$$

Figure 1: Initial condition for system considered in question 1

(a) (10 points) What are the multiplicities W of the possible energy distributions of this whole system (accounting for both subsystems)?

$$U_A = 0, W =$$
 $U_A = 1, W =$
 $U_A = 2, W =$
 $U_A = 3, W =$

(b) (10 points) What are the relative probabilities of each possible configuration?

$$U_A = 0, p =$$
 $U_A = 1, p =$
 $U_A = 2, p =$
 $U_A = 3, p =$

2. (5 points) Now consider a different system with two different subsystems C and D where $N_C = 12$ and $N_D = 4$. If the total energy U = 4, and the two subsystems are in thermal contact, what are the expected energies in each of the two subsystems?

$$\langle U_C \rangle =$$
 $\langle U_D \rangle =$

3. For fun if you finish early: What is the matrix formulation for the second order term in the Taylor series expansion of P(V,T) around the point (V^*,T^*) that we started discussing yesterday? Assume n=1.

$$P(V,T) = \frac{RT}{V}$$

We will discuss this next week, but it might be good to think about first.