Quiz 4

Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the page.	Question:	1	2	3	Total
	Points:	20	5	0	25
	Score:				

Name and section:

1. Consider a system divided into two subsystems A and B each with three particles $(N_A = N_B = 3)$ in either of two energy states $\varepsilon = 1$ or $\varepsilon = 0$. The initial state of this system is shown in fig. 1. Assume the system starts with all three particles in A in the $\varepsilon = 1$ state, and then the subsystems are put into thermal contact where energy is allowed to move between A and B, but the total energy $U = U_A + U_B$ remains constant.

Figure 1: Initial condition for system considered in question 1

(a) (10 points) What are the multiplicities W of the possible energy distributions of this whole system (accounting for both subsystems)?

```
U_A = 0, W = 1
U_A = 1, W = 9
U_A = 2, W = 9
U_A = 3, W = 1
```

(b) (10 points) What are the relative probabilities of each possible configuration?

$U_A = 0, p = \frac{1}{20}$	
$U_A = 1, p = \frac{9}{20}$	
$U_A = 2, p = \frac{9}{20}$	
$U_A = 3, p = \frac{1}{20}$	

2. (5 points) Now consider a different system with two different subsystems C and D where $N_C = 12$ and $N_D = 6$. If the total energy U = 6, and the two subsystems are in thermal contact, what are the expected energies in each of the two subsystems?

$$\begin{array}{ll} N_C = 12, \ N_D = 6 & N_C = 12, \ N_D = 4 & N_C = 15, \ N_D = 5 \\ \langle U_C \rangle = 4 & \langle U_C \rangle = 3 & \langle U_C \rangle = \frac{15}{4} \\ \langle U_D \rangle = 2 & \langle U_D \rangle = 1 & \langle U_D \rangle = \frac{5}{4} \end{array}$$

3. For fun if you finish early: What is the matrix formulation for the second order term in the Taylor series expansion of P(V,T) around the point (V^*, T^*) that we started discussing yesterday? Assume n = 1.

$$P(V,T) = \frac{RT}{V}$$

We will discuss this next week, but it might be good to think about first.