Answer the questions in the spaces provided. If you run out of room for an answer, continue on the back of the page.

Question:	1	2	Total
Points:	20	5	25
Score:			

а	m	ρ	•

1.	Consider a syste	em with	$_{\mathrm{three}}$	energy	levels a	s de	scribed	in	the	table	below.	Assume	the	system	has
	Boltzmann-weighted probabilities $(p(\epsilon) \propto e^{-\epsilon \beta})$.														

ϵ	g
0	1
ϵ_0	1
$2\epsilon_0$	γ

(a)	(5 points)	Write an	${\it expression}$	for the	partition	function	q as a	function	of energy,	degeneracy.	, and
	temperatu	re.									

$$q =$$

(b) (5 points) What is an expression for the average energy? This can be left as a (simplified) function of q.

$$\langle \epsilon
angle =$$

(c) (5 points) At what temperature will the probabilities of the first and third energy levels be the same (i.e., $p_1^* = p_3^*$). T will be a function of ϵ_0 and γ .

$$T =$$

(d) (5 points) For $\epsilon_0 = \ln(2)/\beta$ and $\gamma = 2$, compute the equilibrium probabilities of the three energy levels.

$$p_1^* = p_2^* = p_3^* =$$

2. (5 points) For fun if you have time: What could Thomas as the teaching fellow for the course have done better?