## Quiz 13

| Answer the questions in the spaces provided. If you run | Question: | 1  | 2 | Total |
|---------------------------------------------------------|-----------|----|---|-------|
| out of room for an answer, continue on the back of the  | Points:   | 20 | 5 | 25    |
| page.                                                   | Score:    |    |   |       |

Name:

1. Consider a system with three energy levels as described in the table below. Assume the system has Boltzmann-weighted probabilities  $(p(\epsilon) \propto e^{-\epsilon\beta})$ .



(a) (5 points) Write an expression for the partition function q as a function of energy, degeneracy, and temperature.

Solution:  $q = 1 + e^{-\epsilon_0\beta} + \gamma e^{-2\epsilon_0\beta}$ 

(b) (5 points) What is an expression for the average energy? This can be left as a (simplified) function of q.

Solution:

$$\langle \epsilon \rangle = \frac{1}{q} \left( \epsilon_0 \mathrm{e}^{-\epsilon_0 \beta} + 2\epsilon_0 \gamma \mathrm{e}^{-2\epsilon_0 \beta} \right)$$

(c) (5 points) At what temperature will the probabilities of the first and third energy levels be the same (i.e.,  $p_1^* = p_3^*$ ). T will be a function of  $\epsilon_0$  and  $\gamma$ .

Solution:

$$\frac{1}{q} = \frac{1}{q} \gamma e^{-2\epsilon_0 \beta}$$
$$\frac{1}{\gamma} = e^{-2\epsilon_0 \beta}$$
$$\ln \gamma = 2\epsilon_0 \beta$$
$$\beta = \frac{\ln \gamma}{2\epsilon_0}$$
$$T = \frac{2\epsilon_0}{k_B \ln \gamma}$$

(d) (5 points) For  $\epsilon_0 = \ln(2)/\beta$  and  $\gamma = 2$ , compute the equilibrium probabilities of the three energy levels.

| Solution: |                                                               |
|-----------|---------------------------------------------------------------|
|           | $q = 1 + \frac{1}{2} + 2\frac{1}{4} = 2$                      |
|           | $p_1^* = \frac{1}{2}$                                         |
|           | $n^* = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$           |
|           | $P_2 = 2 - 2 - 4$                                             |
|           | $p_3^* = 2 \cdot \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{4}$ |

2. (5 points) For fun if you have time: What could Thomas as the teaching fellow for the course have done better?