0	•	10
()	1117	
ખ્ય	un	10

Answer the questions in the spaces provided. If you run	Question:	1	Total	I
out of room for an answer, continue on the back of the	Points:	25	25	1
page.	Score:			I

Name:

A general partition function Z for a Boltzmann distribution with discrete energy states is

$$Z = \sum_{i} e^{-\beta E_{i}}$$

where $\beta = (k_B T)^{-1}$, E_i is the energy of microstate *i*, and the sum is over all possible microstates.

- 1. Consider a gas of N carbon monoxide (CO) molecules above a metallic surface. Treat each CO molecule as an independent, distinguishable two level system. Assume each CO molecule can exist in one of two energy states: free in the gas $(E_1 = 0)$ and bound to the surface $(E_2 = -\epsilon)$. Further assume there is a multiplicity of gas states $\gamma_{\rm g}$ and multiplicity of bound states $\gamma_{\rm b}$ available to each molecule, and that $\gamma_{\rm g} > \gamma_{\rm b} \gg N$.
 - (a) (10 points) What is the partition function q(T) for a single CO molecule in terms of ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$?

$$q(T) =$$

(b) (10 points) What is the partition function Q(T) for N molecules of CO in terms of N, ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$? Be sure to account for the indistinguishability of the CO molecules.

Q(T) =

(c) (5 points) What is the average energy, $U = \langle E \rangle$ for N molecules of CO in terms of N, ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$?

$$U(T) =$$

For fun, if you have time:

(d) What is the constant volume heat capacity, $C_V = \left(\frac{\partial U}{\partial T}\right)_V$ for N molecules of CO in terms of N, ϵ , γ_g , γ_b , and $k_B T$.

$C_V(T) =$		
$C_V(T) =$		

(e) Plot the energy U(T) and constant volume heat capacity $C_V(T)$ as a function of temperature. Clearly indicate the high and low (T = 0) temperature limits.

