Q	uiz	10

Answer the questions in the spaces provided. If you run	Question:	1	Total	
out of room for an answer, continue on the back of the	Points:	25	25	
page.	Score:			

Name:

A general partition function Z for a Boltzmann distribution with discrete energy states is

$$Z = \sum_{i} e^{-\beta E}$$

where $\beta = (k_B T)^{-1}$, E_i is the energy of microstate *i*, and the sum is over all possible microstates.

- 1. Consider a gas of N carbon monoxide (CO) molecules above a metallic surface. Treat each CO molecule as an independent, distinguishable two level system. Assume each CO molecule can exist in one of two energy states: free in the gas $(E_1 = 0)$ and bound to the surface $(E_2 = -\epsilon)$. Further assume there is a multiplicity of gas states $\gamma_{\rm g}$ and multiplicity of bound states $\gamma_{\rm b}$ available to each molecule, and that $\gamma_{\rm g} > \gamma_{\rm b} \gg N$.
 - (a) (10 points) What is the partition function q(T) for a single CO molecule in terms of ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$?

Solution: $q(T) = \gamma_{\rm g} \exp\left(-\frac{0}{k_B T}\right) + \gamma_{\rm b} \exp\left(-\frac{-\epsilon}{k_B T}\right)$ $q(T) = \gamma_{\rm g} + \gamma_{\rm b} \exp\left(\frac{\epsilon}{k_B T}\right)$

(b) (10 points) What is the partition function Q(T) for N molecules of CO in terms of N, ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$? Be sure to account for the indistinguishability of the CO molecules.

Solution:

$$Q(T) = \frac{[q(T)]^N}{N!}$$
$$Q(T) = \frac{1}{N!} \left(\gamma_{\rm g} + \gamma_{\rm b} \exp\left(\frac{\epsilon}{k_B T}\right) \right)^N$$

(c) (5 points) What is the average energy, $U = \langle E \rangle$ for N molecules of CO in terms of N, ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$?

Solution: For a single particle, the expected energy U_s is

$$U_{s} = 0 \cdot \frac{\gamma_{g}}{q(T)} + (-\epsilon) \cdot \frac{\gamma_{b} \exp\left(\frac{\epsilon}{k_{B}T}\right)}{q(T)}$$
$$= -\frac{\epsilon \gamma_{b} \exp\left(\frac{\epsilon}{k_{B}T}\right)}{\gamma_{g} + \gamma_{b} \exp\left(\frac{\epsilon}{k_{B}T}\right)}$$

For the system of N particles,

$$U = \langle E \rangle = -\frac{N\epsilon\gamma_{\rm b}\exp\left(\frac{\epsilon}{k_BT}\right)}{\gamma_{\rm g} + \gamma_{\rm b}\exp\left(\frac{\epsilon}{k_BT}\right)}$$

For fun, if you have time:

(d) What is the constant volume heat capacity, $C_V = \left(\frac{\partial U}{\partial T}\right)_V$ for N molecules of CO in terms of N, ϵ , γ_g , γ_b , and $k_B T$.

Solution:

$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} = \frac{1}{k_{B}T^{2}} \frac{N\epsilon^{2}\gamma_{b}\gamma_{g}\exp\left(\frac{\epsilon}{k_{B}T}\right)}{\left(\gamma_{g} + \gamma_{b}\exp\left(\frac{\epsilon}{k_{B}T}\right)\right)^{2}}$$
$$= -\frac{\epsilon\gamma_{g}}{k_{B}T^{2}}\frac{U(T)}{q(T)}$$

(e) Plot the energy U(T) and constant volume heat capacity $C_V(T)$ as a function of temperature. Clearly indicate the high and low (T = 0) temperature limits.

